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Abstract

Unemployment rates differ widely across local labor markets. I offer new empirical evidence that
high local unemployment emerges because of elevated local job losing rates. Local employers, rather
than local workers or location-specific factors, account for most of spatial gaps in job stability. I then
propose a theory in which spatial differences in job loss emerge in equilibrium because of systematic
differences between employers across local labor markets. The spatial allocation of heterogeneous
employers in turn follows from their spatial sorting decisions. Labor market frictions induce productive
employers to over-value locating close to each other. The optimal policy incentivizes them to relocate
towards areas with high job losing rates, providing a rationale for commonly used place-based policies.
I estimate the model using French administrative data. The estimated model accounts for over three
fourths of the cross-sectional dispersion in unemployment rates and for the respective contributions of
job losing and job finding rates. Inefficient location choices by employers amplify spatial unemployment
differentials five-fold. Both real-world and optimal place-based policies can yield sizable local and
aggregate welfare gains.
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Introduction

Unemployment rates vary enormously across local labor markets. In 2017 in Versailles, an affluent French

city close to Paris, 5% of workers were unemployed. In southern Marseille, the unemployment rate

exceeded 12%. Comparable differences arise in the United States and in most other developed countries.1

Despite their magnitude, these spatial gaps persist over decades. While local governments devote billions

of dollars every year to attract jobs, the determinants of spatial unemployment differentials remain elusive.

Why is the unemployment rate persistently high in some places and low in others? What are the welfare

implications of this spatial dispersion for workers? Can place-based policies improve the prospects of local

residents and the aggregate economy?

This paper proposes answers to these questions with four contributions. First, I offer new empirical

evidence showing that spatial unemployment differentials result from spatial gaps in the rate of job loss,

which are in turn shaped by local employers rather than local workers. Second, I propose a theory of

the location choice of employers with labor market frictions that accounts for spatial differences in job

stability. Third, I estimate the framework on French administrative data. Fourth, I quantify the local

and aggregate welfare gains from place-based policies in general equilibrium.

Specifically, in the first part of the paper, I examine how local labor market flows differ between

locations. I assess whether differences in unemployment rates across commuting zones reflect differences

between job losing (inflow) versus job finding (outflow) rates using French matched employer-employee

data. Differences in job losing rates emerge as the primary source of spatial unemployment differentials,

accounting for 77% of the variation. By contrast, job finding rates are nearly constant across locations.

Using a two-way fixed effect approach, I then establish that employer-specific heterogeneity accounts for

two thirds of spatial job loss differences, while worker-specific heterogeneity accounts for only one third.

The contribution of employers is robust to controlling for location-specific factors. Similar patterns also

hold in the Current Population Survey in the United States.

The dominant role of the job losing rate indicates that locations have high unemployment because

workers repeatedly lose their job there, not because finding a job is particularly hard. This result contrasts

with aggregate unemployment fluctuations, as well as with existing models of spatial unemployment that

have focused on the job finding rate.2 The composition analysis reveals that spatial gaps in the rate of

job loss arise because of systematic differences in job stability between employers.

In the second part of the paper, I propose an analytical theory to account for spatial gaps in job

losing rates and the key role of employer heterogeneity. Workers choose freely where to live and work,

and employers choose where to open jobs.3 They meet in local labor markets subject to standard search

frictions. Housing is in limited supply. Employers offer jobs that differ in initial productivity, which

subsequently fluctuates due to idiosyncratic shocks. As a result, endogenous job loss arises, and initially

more productive jobs are more stable.

Local labor market flows reflect spatial differences in employer productivity, regardless of whether

employer productivity is given or determined in equilibrium. The job losing rate is high where employers

1In 2017, the unemployment rate was 5% in Boston, Massachusetts. It was 13% in Flint, Michigan. See the OECD
(2005) report for more countries.

2Changes in the job finding rate have been found to be the dominant force in aggregate unemployment fluctuations over
the business cycle. See Shimer (2005), Hall (2005), Fujita and Ramey (2009), Krusell et al. (2017).

3As is common in the search literature, there is no difference between employers, firms and jobs in my framework.

1



are unproductive and jobs have low surplus. Job finding rates depend on two components: the meeting

rate of workers and the probability that a meeting sucessfully results in a viable match. Whether job

losing rates vary strongly across locations while job finding rates remain largely flat thus depends on

cross-sectional patterns of employer productivity and labor market tightness.

The location decisions of employers shape spatial heterogeneity in productivity. Employers value two

types of location characteristics. First, they value exogenous location fundamentals. Standard production

complementarities imply that more productive employers are willing to pay more for locations that are

inherently better suited for production. There, less productive employers are priced out by high wages

and thus self-select into locations with poor fundamentals but low wages.

Second, employers value endogenous recruiting conditions. The location choice of employers then

interacts with labor market frictions to uncover labor market pooling complementarities. Productive

employers make high profits. Thus, they forego relatively more than unproductive employers while waiting

for a worker: productive employers have a higher opportunity cost of time. At the margin, they are willing

to pay more for slack labor markets where they recruit rapidly. By contrast, unproductive employers are

priced out by high wages and self-select into low wage areas where they fill vacancies slowly.

Sorting emerges in spatial equilibrium as a result of the differential valuation of both exogenous and

endogenous local characteristics by different employers. Of course, when differences in local fundamentals

are large, cross-sectional sorting patterns based on vacancy filling rates alone hold only conditionally.

Unconditional sorting patterns are more complex.

The spatial sorting of employers has strong predictions for local labor market flows. Spatial gaps in

job losing rates are large because different employers locate in different places. Job finding rates vary less

in the cross-section because workers make offsetting decisions that stablize both components of job finding

rates. At the margin, productive employers are drawn towards slack labor markets. If the labor market

was too slack however, workers would out-migrate. In addition, higher sucess probabilities of meetings in

locations with productive employers are partially balanced by workers being more selective there.

Reduced-form evidence using administrative establishment-level productivity and vacancy data sup-

ports these implications. Labor productivity correlates negatively with job losing rates across French

establishments and commuting zones. Local labor market tightness rises at most modestly with local

unemployment.

I then show that the spatial equilibrium features misallocation because of a labor market pooling

externality. Labor market frictions enable unproductive employers to attract more workers than would

be socially optimal, should they enter in a location with more productive competitors. Hence, employers

privately co-locate too much with more productive competitors that attract a larger pool of workers

and ease recruiting. A utilitarian planner thus chooses an optimal policy that incentivizes productive

employers to relocate towards high job loss areas. A corporate tax credit whose generosity rises with local

job losing rates implements the optimal allocation, providing a rationale for commonly used place-based

policies that subsidize employers in high unemployment locations.

The third part of the paper develops and structurally estimates a quantitative version of the framework

with three main additions. First, locations also differ in residential amenities that capture non-monetary

compensating differentials such as pleasant weather. Second, migration frictions introduce empirically

plausible migration elasticities. Third, workers differ in human capital that depreciates while they are

unemployed. In equilibrium, localized scarring effects in high unemployment areas produce clusters of
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workers with low human capital. There, productive stable jobs are less likely to open, further worsening

local labor market conditions and magnifying spatial disparities.

Despite its richness, the quantitative model retains the tractability of the analytical framework. As

a result, it produces estimating equations that allow for transparent identification by leveraging the

many dimensions of the French administrative data. A recursive scheme delivers a sequence of regression

equations that identify all but one of the 19 parameters without requiring to simulate from the model. The

model can match a number of non-targeted moments such as the tenure profile of job loss within and across

locations. The estimation directly targets neither the cross-sectional variance of local unemployment rates

nor its breakdown into job losing and job finding rates.

The fourth part of the paper reveals that the estimated model accounts for the primary margins

of spatial unemployment differentials. It generates over 75% of the cross-sectional variance of local

unemployment rates in the data. It also closely replicates the respective contributions of job losing and

job finding rates. 77% stem from the job losing rate in the data, against 73% in the model. The model

matches the empirical relationship between local labor market flows on the one hand, and local wages,

population and labor market tightness on the other hand. Pooling externalities are crucial to rationalize

the location choice of employers, and hence job losing rate differences. Shutting down pooling externalities

diminishes the incentives of employers to sort, and strongly reduces gaps in job losing rates. As a result,

the spatial variation in unemployment rates shrinks by 84%.

Two counterfactuals then explore the impact of place-based policies in general equilibrium. I start

with the optimal policy. It takes the form of a corporate tax credit that is more generous in high

unemployment locations. The optimal policy thus offsets the labor market pooling externality, and

incentivizes more productive employers to relocate towards high unemployment locations. The optimal

policy cuts the local unemployment rate by 5 to 10 percentage points and achieves 5 to 10% local welfare

gains in cities such as Marseille. Long-run scarring effects of unemployment are central to these welfare

gains, accounting for three fourths of the total. Aggregate welfare gains are just under 1%. They are

more modest than local gains in high unemployment locations because they average over a sizeable

redistribution of resources across locations. As the most productive and stable jobs leave the lowest

unemployment locations, residents experience welfare losses there.

I contrast the optimal policy with the French Enterprise Zones (EZ) program—the “Zone Franches

Urbaines.” The French EZ program was rolled out in 1996 and consisted in heavy subsidies for businesses

opening jobs in high unemployment areas. Qualitatively, the French EZ policy resembles the optimal

policy and should deliver positive welfare gains. Quantitatively however, the French EZ program is

much smaller than the optimal policy in scale and scope. I find that the French EZ program reduces

unemployment in treated areas by 2 to 3 percentage points, consistent with existing difference-in-difference

estimates. Local welfare gains do not exceed a few percent. In the aggregate, the EZ program raised

welfare by 0.1%. Albeit modest, the impact of the EZ program is six times higher per dollar spent than

the optimal policy, due to decreasing returns to redistribution. This comparison suggests that small-

scale place-based policies are likely to be more efficient than large-scale ones in the presence of fiscal

optimization or political economy constraints.

This paper adds to four strands of literature. First and most closely related is the body of work that
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examines persistent spatial unemployment differentials.4 Kline and Moretti (2013), Şahin et al. (2014),

Marinescu and Rathelot (2018) and Schmutz and Sidibé (2018) study spatial variants of the Diamond

(1982), Mortensen (1982), and Pissarides (1985) model. All of these papers focus on job finding rates.

By contrast, I stress that job losing rates are the key drivers of spatial unemployment differentials.5 As

a result, a different theory is required. It brings about that subsidies to high unemployment areas raise

welfare, reconciling theory with real-world place-based policies.

Second, this paper adds to the literature that studies the location decisions of agents. A first subset

focuses on workers’ location decisions based on income prospects (Roback, 1982, Kennan and Walker, 2011,

Desmet and Rossi-Hansberg, 2013, Bilal and Rossi-Hansberg, 2021).6 A second set of papers studies firms’

location choices (Combes et al., 2012, Gaubert, 2018). Both literatures abstract from unemployment,

while I show that including it leads to distinct policy implications. A final strand of literature proposes

theoretical assignment models to study sorting between workers and employers (Sattinger, 1993, Shimer

and Smith, 2000, Eeckhout and Kircher, 2018, Davis and Dingel, 2020), which I build on.

Third, this paper adds to the body of work that studies the efficiency properties of search models

(Hosios, 1990, Mortensen and Pissarides, 1994).7 The labor market pooling externality is a spatial

analogue of Acemoglu (2001): when heterogeneous jobs coexist, too many low productivity jobs open

because they fail to internalize that they divert workers away from productive jobs. In my model, similar

forces push unproductive jobs to inefficiently locate in places that are too productive for them. In

contemporaneous work, Brancaccio et al. (2020) emphasize a related mechanism in transport markets.

Finally, this paper is closely tied to the large literature on agglomeration and congestion externalities.

Going back to at least Marshall (1920) who coined labor market pooling as a key agglomeration force,

local externalities have formed the basis for place-based policies.8 Empirical analyses of the latter have

found mixed employment effects (Glaeser and Gottlieb, 2008, Hanson, 2009, Neumark and Simpson, 2014,

Busso et al., 2013, Mayer et al., 2015, Slattery and Zidar, 2020). Several papers propose spatial models to

analyze place-based policies, but all abstract from unemployment (Ossa, 2017, Fajgelbaum et al., 2018,

Slattery, 2019, Fajgelbaum and Gaubert, 2020). Agglomeration economies often imply subsidies to high

income locations. I emphasize instead a particular mechanism whereby labor market pooling externalities

favor subsidies to low income locations, consistently with many real-world place-based policies. The idea

that redistributing a given set of jobs across locations can improve aggregate outcomes goes back at least

to Bartik (1991), and has been recently revived by Austin et al. (2018). This paper proposes a theory of

frictional local labor markets that makes this idea precise.

The remainder of the paper is structured as follows. Section 1 presents the data and empirical analysis.

Section 2 builds and empirically validates a simple model of spatial unemployment differentials with

endogenous job loss. Section 3 lays out the quantitative extensions and estimation. Section 4 discusses

spatial unemployment gaps and policy counterfactuals. The last section concludes. An Appendix and

Online Supplemental Material collect proofs and additional details.

4Blanchard and Katz (1992)’s seminal work found little evidence of state-level unemployment persistence between 1975
and 1985. Kline and Moretti (2013) and Amior and Manning (2018) show that unemployment and labor force participation
differentials between US commuting zones are highly persistent after 1980, but abstract from variation in job losing rates.

5See Hall (1972) for a study of 12 U.S. cities, and Topel (1984) for an analysis across U.S. states.
6See also Diamond (2016), Giannone (2017) Caliendo et al. (2021), Glaeser et al. (2018), and Couture et al. (2019).
7See Jarosch (2021) and Mangin and Julien (2021) for recent contributions.
8See Krugman (1991) and Amiti and Pissarides (2005) for a study of labor pooling without search frictions.
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1 Descriptive evidence

This section first describes the data. Next, I highlight that spatial unemployment gaps are large and

persistent. Then, I show that spatial unemployment gaps are primarily driven by spatial differences in

job losing rates, in turn tied to employers rather than workers or location-specific factors. My main

analysis focuses on France where I can exploit the richness of administrative data, but I also confirm the

main findings in the United States.

1.1 Data

Worker flows in and out of unemployment are central components of labor market studies. Aggregate time

series exercises typically break down the contribution of job losing and job finding rates in accounting

for the unemployment rate. While they are jointly determined equilibrium variables, separating their

contributions is a useful diagnostic device that informs the underlying economic mechanisms.

Adapting this approach to a geographic setting is challenging. On the one hand, large repeated

cross-sections like the Census or the American Community Survey are ill-suited for measuring worker

flows. On the other hand, surveys with a short panel dimension such as the Current Population Survey

(CPS) typically have a much smaller cross-section.9 This limitation leads to measurement error concerns,

particularly for the outflow from unemployment, and prevents any compositional split. In addition, panel

surveys often stop tracking movers who change location.

To circumvent these difficulties, I turn to administrative matched employer-employee data from France.

I use a combination of the DADS and of the French Labor Force Suvey (LFS) between 1997 and 2007.10

The DADS have two advantages. First, they are a representative dataset containing almost one million

individuals in any cross-section. Second, the DADS are a panel covering the entire work history of

individuals, with rich demographic, geographic and firm-level information. The sample size lets me break

down the analysis by city and finely disaggregated employer and worker groups to control for composition.

The DADS are well-suited to study individual-level employment and non-employment across space.11

To further separate non-employment into unemployment and non-participation, I first restrict my sam-

ple to males between 30 and 52 years old. This group has a high and stable labor force participation

rate, thereby limiting concerns related to life-cyle changes therein. Second, I complement the DADS

with the LFS. I compute conditional transition probabilities between employment, unemployment and

non-participation in the LFS, by broad city and worker group. I then use those conditional transition

probabilities from the LFS to probabilistically discriminate between non-participation and unemployment

in the DADS.12 In practice, this imputation has a limited impact on the results. I aggregate the resulting

sample at the quarterly frequency. Table 11 in Supplemental Material D.1 compares aggregate statistics

in this sample and in the LFS.

9The CPS has about five unemployed individuals per metropolitan area on average in any cross-section.
10DADS: “Déclarations Annuelles de Données Sociales.” The LFS is the “Enquête Emploi.”
11Consistent with the International Labour Office’s definition, I define an employed individual as one who has a job. A

non-employed individual is one who is not working for a wage. An unemployed individual is one who is not working but is
actively looking for a job and available to start work within two weeks.

12This imputation exercise resembles Blundell et al. (2008) who use the Panel Study of Income Dynamics to complement
consumption categories in the Consumption Expenditure Survey. For instance, if an individual goes through an employment
to non-employment transition in the DADS, I define her employment status after the transition (unemployment or no-
employment) based on the LFS transition probabilities.
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I complement these datasets with several other data sources. I compute city-level and establishment-

level variables with a repeated cross-section version of the DADS that covers the universe of French

workers. For over-identifying exercises in Section 2.6, I use firm-level balance sheet data covering the near

universe of French businesses for the same period, as well as establishment-level vacancy data from a large-

scale survey. I also use a single cross-section of housing prices from an online realtor, MeilleursAgents.com.

I define a location as a commuting zone as defined by the French statistical institute INSEE.13 A

commuting zone is an area where most of the residents work at jobs located in that same area. There are

328 commuting zones that partition the French territory. This definition is most natural as a spatial notion

of a local labor market. In what follows, location, commuting zone and city are used interchangeably. I

construct a measure of skill from occupation and age data because the main DADS panel dataset does

not have education data. Skill is defined as the average age and occupation wage premium for a worker,

derived from a Mincer regression. Supplemental Material D.1 provides more details.

For the United States, I use the CPS. I define a location as a metropolitain statistical area, and use

a similar definition of skill as in France.14 I focus on white males between 30 and 52 years old that are

household heads, and use the CPS’s definition of unemployment.

1.2 Dispersion and persistence of spatial unemployment differentials

I start by showing that local unemployment rates are widely dispersed and highly persistent across

locations in France. Figure 1(a) maps commuting-zone level unemployment rates in mainland France.

Darker shades of blue encode higher unemployment rates. Figure 1(a) highlights that commuting zones

with unemployment rates above 12% or below 6% can be found throughout the country. The cross-

sectional standard deviation is 2.5 percentage points, twice as much as the time-series standard deviation

of the aggregate unemployment rate, 1.3 percentage points.

To assess the persistence of spatial unemployment differentials, I split the sample in two subperi-

ods, 1997-2001 and 2002-2007. Figure 1(b) plots the local unemployment rate in the second subperiod

against the unemployment rate in the first subperiod for every city. Local unemployment rates are highly

persistent, as they line up closely around the orange 45 degree line. The 5-year autocorrelation is 0.91.15

Figure 1 confirms earlier findings from Kline and Moretti (2013) and Amior and Manning (2018) for

the United States. I now turn to the main empirical contribution of this paper: unpacking how worker

flows in and out of unemployment differ between commuting zones.

1.3 Worker flows in and out of unemployment

Inflows from local employment, from non-participation and in-migration from other locations all con-

tribute to local unemployment. Similarly, outflows into local employment, into non-participation and

out-migration reduce the number of unemployed workers. In what follows, I use standard terminology

from the literature and call the rate at which employed workers flow into unemployment the job losing

rate. Similarly, I call the rate at which unemployed workers flow into employment the job finding rate.

13“Institut National de la Statistique et des Etudes Economiques.”
14I also check that using education to define skill in the CPS leaves the results unchanged.
15In Supplemental Material D.2, I show that controlling for economy-wide industry business cycles increases local persis-

tence, with a conditional autocorrelation of 1.05.

6



Figure 1: Unemployment rates in France, by commuting zone and over time

(a) Local unemployment rates, 1997-2007 averages

12.4 - 21.5
10.3 - 12.4
9.5 - 10.3
8.7 - 9.5
8.2 - 8.7
7.7 - 8.2
7.1 - 7.7
6.4 - 7.1
5.2 - 6.4

Versailles

Paris

Marseille

(b) Persistence of local unemployment rates

.0
25

.0
5

.0
75

.1
.1

25
.1

5

U
ne

m
pl

oy
m

en
t r

at
e,

 2
00

2-
20

07
.025 .05 .075 .1 .125 .15

Unemployment rate, 1997-2001
45d. Data: raw. Autocorr. of level = 0.91 ; Autocorr. of log = 0.84

Note: Figure 1(a) maps commuting zone unemployment rates from the DADS panel. Corsica and overseas territories omitted for
exposition. Figure 1(b) plots commuting zone unemployment in two subperiods of the sample. Blue circles represent a commuting zone.
Size is proportional to population.

To guide the analysis, start with a simple two-state accounting model. Suppose that employed workers

in city c face a constant job losing rate sc per unit of time (separation rate to unemployment), and that

unemployed workers face a constant job finding rate fc per unit of time. Abstract from movements in

and out of the labor force and migration. In steady state, the local unemployment rate uc satisfies

log
uc

1− uc
= log sc − log fc. (1)

Both sc and fc map to transition probabilities between employment and unemployment in the data.

I depict the contribution of job losing and job finding rates to local unemployment using equation

(1). Figure 2 plots the logarithm of job losing rates sc and finding rates fc against the logarithm of the

unemployment-employment ratio uc
1−uc across commuting zones, for France and the United States.

Job losing rates emerge graphically as the main driver of spatial unemployment differentials. The data

align closely with the 45 degree line in orange for both countries in Figure 2(a). In contrast to job losing

rates, job finding rates appear nearly flat across locations in Figure 2(b).16

I confirm quantitatively the key role of job losing rates. I use equation (1) for an exact variance

decomposition by constructing a predicted unemployment rate from job losing and finding rates using

equation (1). I find that the job losing rate accounts for 77% of the cross-sectional variation of the spatial

unemployment rate in France. The job finding rate accounts for the remaining 23%. In the US, the job

losing rate accounts for 73% of the cross-sectional variation in spatial unemployment rate.

I establish the robustness of these results with several additional exercises. First, the central role of job

16Similarly, job-to-job mobility co-varies little with local unemployment in Figure 17(b), Supplemental Material D.2.
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Figure 2: Local labor market flows and unemployment in France and in the United States.
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Note: Figure 2(a) scatterplots the log of the job losing rate against the log of the unemployment-employment ratio, across commuting
zones in France (DADS panel) and in the United States (CPS). Blue circles represent commuting zones in France, with size proportional
to population. Green dots represent metro area groups in the US. US metro areas are grouped into 20 equally populated bins to reduce
measurement error due to the smaller cross-sectional size of the CPS. 45 degree line in orange. Figure 2(b) scatterplots minus the log
of the job finding rate against the log of the unemployment-employment ratio, across commuting zones in France and in the US.

loss is robust to deviations from the exact variance decomposition. Table 4 in Appendix A.1 shows that

neither movements in and out of the labor force, migration, local transitional dynamics, time aggregation

of quarterly probabilities into instantaneous rates, using the LFS only, nor other residual mechanisms,

introduce a significant wedge between the left and right sides of equation (1).

Second, I verify that mechanical correlates of job loss such as temporary contracts, seasonality, firm

exit or job reallocation cannot provide a systematic explanation for spatial differences in job losing rates.

Supplemental Material D.3 establishes that these phenomena account for at most 8 to 23% of spatial

gaps in job loss. By contrast, Table 2 in Section 4.1 shows that job losing rates are strongly negatively

associated with local wages, but only weakly with local population. Job finding rates do not correlate

strongly with either variable.

Third, I relate long-run differences across locations to changes over time. I split the sample into two

subperiods and use equation (1) in changes over time. Consistently with the business cycle literature,

Figure 10 in Appendix A.1 finds that job finding rates play a larger role for spatial unemployment

differentials at shorter frequencies. Thus, variation in job losing rates is key in the long run rather than

in the short run even at the city level.17

17Elsby et al. (2013) document that the role of the job finding rate for aggregate business cycles is strongest in Anglo-Saxon
economies. Albeit somewhat less pronounced, the job finding rate remains dominant in other OECD economies. Figure 2
indicates that the job losing rate is equally important for spatial differences in both the United States and France.
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1.4 Employer and worker composition

Three main reasons may lead to spatial differences in job losing rates. First, workers who reside in some

locations may separate into unemployment more frequently. Second, employers in these same locations

may offer jobs that are particularly unstable. Third, city-specific factors may affect local job stability.

To disentangle these explanations, I estimate a three-way fixed effect model (Abowd et al., 1999):

EUi,t = αi + βJ(i,t) + γC(i,t) + εi,t, (2)

where i indexes workers and αi denotes a worker fixed effect. J(i, t) denotes worker i’s employer in

quarter t, and βJ(i,t) denotes an employer fixed effect. C(i, t) denotes worker i’s city in quarter t, and

γC(i,t) denotes a city fixed effect. EUi,t is an indicator variable taking the value one if worker i separates

into unemployment in quarter t, and zero otherwise.

I use two main specifications. First, I define an employer as a firm-by-4-digit-occupation. This

definition captures spatial heterogeneity in the type of jobs to the extent that different firms operate

in different locations. This definition also captures heterogeneity in the type of jobs across occupations

within the same firms. Identification follows from the well-known conditional random mobility assumption

(Card et al., 2013). Worker mobility across firm-occupations identifies employer effects separately from

worker effects. Worker mobility across locations separates city effects from worker effects. In this spatial

context, I also exploit multi-establishment firms to separately identify firm-occupation effects from city

effects. To alleviate concerns associated to limited mobility bias, I follow Bonhomme et al. (2019) and

cluster worker, employers and commuting zones into groups before estimating (2). I provide more details

in Appendix A.2.

In the second main specification, I define an employer as an establishment-by-4-digit-occupation. This

definition captures both spatial heterogeneity in the type of jobs across establishments within the same

firm, as well as heterogeneity in the type of jobs across occupations within the same establishment. Since

establishments do not move by definition, I do not include a city fixed effect in this specification.

After estimating (2), I retrieve the estimated fixed effects, and average them within every commuting

zone group c to obtain a sample analogue of

EUc = Ec[αi] + Ec[βJ(i,t)] + γc. (3)

Equation (3) breaks down the commuting zone quarterly job losing rate EUc into an average worker com-

ponent Ec[αi], an average employer component Ec[βJ(i,t)], and, in the first specification, a city component

γc. I use this decomposition to assess whether worker composition, employer composition or city-specific

factors contribute most to spatial job loss differentials.

I find that systematic differences in the type of employers operating across cities are the primary reason

why job losing rates differ across space. To reach this conclusion, Figure 3(a) plots the contributions of

the average employer (firm-by-occupation), worker and city components to the unconditional local job

losing rate. Employer effects account for 52% of the cross-sectional variation in job losing rates, while

city effects account only for 22% and worker effects account for 28%.

Of course, different establishments are likely to offer jobs with different attributes, even within the

same firm. Figure 3(b) plots the same decomposition as in Figure 3(a) when employers are defined as an
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Figure 3: Contribution of employer, city and worker effects to local job losing rates in France.
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(b) Establishment and worker effects
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Note: Panel 3(a), left: firm-by-4-digit-occupation, city and worker fixed effects. Panel 3(b), right: establishment-by-4-digit-occupation
and worker fixed effects. Orange: average employer effect. Green: average city effect. Blue: average worker effect. DADS panel,
France. Workers, employers and commuting zones clustered into 10 population-weighted groups based on their unconditional job losing
probability. X-axis represents the sum of employer, city and worker effects, standardized between 0 and 1.

establishment-by-occupation rather than a firm-by-occupation. In this case, employer effects account for

67% of the cross-sectional variation in job losing rates, while worker effects account for only 33%.

Comparing both specifications confirms that employer heterogeneity is the dominant source of varia-

tion in local job losing rates. Its contribution lies between 52% and 67%. The exact proportion depends

on how much within-firm cross-establishment variation stems from within-firm sorting of establishments

as opposed to truly location-specific factors. Yet, location-specific factors can account for no more than

22% of the overall variation, and worker composition accounts for no more than 33%.

What are the characteristics of employers with high job losing rates? I correlate employer fixed effects

with a number of firm-level observables in Figure 11 in Appendix A.2. Firms with unstable jobs sell

less than but employ a comparable workforce to firms with stable jobs. Firms with unstable jobs have

low labor productivity, are less capital-intensive and less profitable. They pay low wages but their labor

share is high. They are largely present in both tradable and non-tradable industries. Together, these

observations indicate that employers with unstable jobs have high labor costs relative to revenues and are

found throughout the economy.

A number of additional exercises confirm the dominant role of employer composition. First, I demon-

strate that industry heterogeneity plays only a limited role. Figure 12 in Appendix A.2 shows that the

co-movement between unemployment, job losing and job finding rates holds for tradable and non-tradable

industries. I then residualize local job losing rates from industry and skill heterogeneity similarly to the

specification in (2), and plot the estimated city fixed effects in Figure 13, Appendix A.2. While there is
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heterogeneity in job losing rates across industries, the mix of industries in cities does not co-vary enough

with industry-specific job losing rates to account for a sizeable share of spatial variation in job losing

rates. Instead, the key heterogeneity driving job loss differentials arises within 3-digit industries rather

than between industries, as well as within worker skills.

Second, I verify that my findings are robust to alternative econometric specifications. Table 5 in

Appendix A.2 shows that results remain similar when using alternative definitions of employers, such as

establishments or firms without interacting with occupation, or when varying the number of clusters.

Third, I assess whether the conditional random mobility assumption that underpins identification in

equation (2) is likely to hold. I correlate changes in individual-level job losing rates with changes in

city-level and firm-level job losing rates for movers, and split the results for movers towards cities or

firms with systematically higher or lower job losing rates. Violations of the conditional random mobility

assumption should manifest as larger coefficients on city and firm-level job losing rates after splitting the

sample. Table 6 in Appendix A.2 finds no evidence against the conditional random mobility assumption.

Overall, the results in this section indicate that spatial differences in job losing rates are by far the

largest contributor to spatial unemployment rate differentials in France and in the United States. These

spatial differences are not explained by the local industry mix or the composition of the workforce. Instead,

spatial gaps in job loss primarily reflect systematic differences in the type of jobs offered by employers.

These findings are, to the best of my knowledge, new to the literature. They elude existing models of

local unemployment that focus on job finding rates and abstract from the role of employers. By contrast,

job losing rates and employer heterogeneity lie at the heart of the theory I propose below.

2 A model of spatial unemployment differentials

This section develops a theory of spatial unemployment differentials. I build on the spatial equilibrium

model of frictional unemployment in Kline and Moretti (2013). I add two key ingredients. First, job loss

is endogenous and tied to employers. Second, heterogeneous employers decide where to locate.

2.1 Setup

Time is continuous. There is a single final good used as the numeraire and freely traded across locations.

Geography. There is a continuum of ex-ante heterogeneous locations endowed with one unit of housing.

Locations differ in productivity ` with cumulative distribution function F` on a connected support [`, `],

with density F ′`. Thus, a location is characterized by its productivity ` rather than its particular name.18

Workers. There is a unit measure of infinitely-lived homogeneous workers. Their preferences over

streams of consumption of the final good ct and housing services ht are

E0

[∫ ∞
0

e−ρt
(

ct
1− ω

)1−ω (ht
ω

)ω
dt

]
,

18Revenue productivity ` captures factors that determine whether a location is well-suited for production. For instance,
a location with high quality transportation infrastructure has high `. Productivity can also encode that local demand for
non-tradables may be particulary high or that local workers may be particularly skilled. In the quantitative model of Section
3, I microfound local productivity with the human capital of local residents.
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with ω ∈ (0, 1). Workers consume their income each period. They only search when unemployed. Workers

are freely mobile across locations.19

Employers and jobs. As is common in the search literature, the productive unit is an employer-worker

match. Thus, the notions of employers, firms, establishments and jobs are interchangeable in the model.20

An employer pays a fixed cost ce to open a new job. After paying ce, the employer draws a job quality—

or expected productivity—z that informs their initial productivity draw. The population distribution of

quality z is Fz, with connected support [z, z] and density F ′z. After observing job quality z, employers

choose a location ` to open their job and search for workers by posting a single vacancy in the local labor

market. After they match with a worker, they draw their initial, idiosyncratic match productivity y0

from a conditional distribution G0(y0|z) that depends on employer quality z. Drawing a higher z implies

that the job will be more productive on average, in a sense made precise in Assumption 1 below. After

observing this initial draw, the matched pair decides to start producing together or not. If not, the worker

returns to unemployment, and the job disappears.

An active job with productivity yt in a location ` produces yt`: local productivity ` and job productivity

yt are technological complements. Over time, every job’s productivity evolves independently according

to a geometric Brownian motion

d log yt = −δdt+ σdWt, (4)

where δ > 0 implies that productivity depreciates on average. This assumption implies that all jobs

eventually separate and is required to obtain a well-defined steady-state distribution.21 σ is the volatility

of shocks. A geometric Brownian motion is the continuous-time analogue of a random walk with drift.

Importantly, the productivity process is identical in all locations, so that any spatial differences in job loss

must originate from differences between employers. For values to remain finite, I impose that ρ+ δ > σ2

2 .

If the match breaks up, the job disappears.

Local labor markets. Unemployed workers search for jobs only in the location where they live, and

employers search for workers only in the location where their job is open. Workers randomly meet vacancies

in a single labor market in each location according to a Cobb-Douglas matching functionM(U(`),V(`)) =

mU(`)αV(`)1−α. U(`) denotes the local number of unemployed workers, and V(`) denotes the local number

of vacancies in that market.

Local market tightness is θ(`) = V(`)/U(`). The local meeting rate for workers is then f(θ(`)) =

mθ(`)1−α while the vacancy meeting rate for employers is q(θ(`)) = mθ(`)−α. Meeting rates differ from

realized rates when some meetings do not result in viable jobs. Denote realized rates by fR(`) and qR(`).

19Ruling out borrowing and saving is immaterial given risk-neutrality. See Bilal and Rossi-Hansberg (2021) for a location
choice model with risk-averse workers who borrow and save. I do not incoporate job-to-job mobility, for three reasons. First,
job-to-job moves do not directly affect the unemployment rate: they relocate workers from one job to another. Second, I
show in Figure 17(b) in Supplemental Material D.2 that, just like the job finding rate, the job-to-job mobility rate is only
weakly correlated with the unemployment rate. Finally, adding job-to-job mobility would break the tractability of the model
and make estimation and identification much more challenging.

20The model can also be seen as one in which there are large, constant-returns-to-scale firms that open many jobs at cost
ce per job. For models with a well-defined notion of firm size through decreasing returns to scale and search frictions, see
Bilal et al. (2022), Schaal (2017) and Elsby and Michaels (2013).

21δ > 0 reflects the difference between parameters governing productivity growth at new jobs relative to incumbent jobs
in endogenous growth models such as Engbom (2018).
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Flow value of unemployment. Unemployed workers in location ` consume b`. This specification

captures the idea that unemployment benefits are a constant replacement rate of past wages, because

wages will scale with local productivity `. It also helps with analytical tractability.22

Wage determination. Workers and employers set wages according to generalized Nash bargaining,

with worker bargaining power β. For simplicity, I assume that renegotiation occurs each instant.

Ownership. A representative mutual fund owns housing and claims to employers’ profits. The mutual

fund rents land to workers at equilibrium rents r(`) and collects profits from employers. For simplicity, I

assume in this section that risk-neutral absentee owners receive the profits from housing rents and firms.23

2.2 Value functions

In what follows, the economy is in steady-state.

Unemployment and employment. Let U be the value of unemployment. Because unemployed work-

ers are freely mobile, their value is equalized across all locations that they populate. The Inada property

of the matching function ensures that any populated location must have some unemployed workers.24

To keep the exposition simple in the main text, I consider wage functions w∗(y, `) that only depend on

productivity y and the location `. As shown in Appendix B.1, this restriction is without loss of generality.

Let V (y, `) be the value of employment at wage w∗(y, `) in location `. U and V satisfy the recursions

ρU = b`r(`)−ω + f(`)E`
[

max{V (y0, `)− U, 0}
]

(5)

ρV (y, `) = w∗(y, `)r(`)−ω + (LyV )(y, `), (6)

where the recursion for V holds as long as the worker finds it optimal to remain in the match.

The first term on the right-hand-side reflects indirect utility when unemployed or employed. Workers

spend a constant share ω of their income on housing due to Cobb-Douglas preferences, and local housing

prices r(`) enter indirect utility. The second term on the right-hand-side of equation (5) reflects future

expected employment opportunities of unemployed workers. At rate f(`), they meet potential employers.

The latter then draw initial productivity y0, with a distribution that may depend on location ` because

employers may differ across locations. Provided initial productivity y0 is high enough, the worker is hired

and the matched pair starts producing together. The second term on the right-hand-side of equation (6)

reflects the expected continuation value of employment due to productivity shocks. Given the geometric

22The specification can also be seen as home production or self-employment with the same production function as firms,
but with an efficiency b. Because the model features aggregate constant returns to scale in production, defining unemployment
benefits to be directly a constant replacement rate of past wages leads to multiplicity.

23Alternatively, the proceeds from land rents and profits can be rebated to workers as a flat earnings subsidy. Given risk-
neutrality, shares of the mutual fund could also be traded. In these cases the cross-sectional implications are unchanged. To
keep the focus on the efficiency properties of the location choice of employers and abstract from distributional considerations
between owners and workers, I use the flat earnings subsidy rebate in the quantitative exercises.

24This argument is valid under a trembling-hand equilibrium refinement in which workers and firms make small mistakes
around their preferred location choices. The two-sided location choice of workers and employers can otherwise result in
coordinating on empty locations. I impose this trembling-hand refinement in the sequel of this paper.
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Brownian motion assumption (4), the functional operator Ly is defined by

LyV =

(
σ2

2
− δ
)
y
∂V

∂y
+
σ2

2
y2∂

2V

∂y2
.

Employers. The value of a matched employer with productivity y in location ` solves

ρJ(y, `) = y`− w∗(y, `) + (LyJ)(y, `)

as long as the employer finds it optimal to keep the worker. Employers value flow profits y`−w∗(y, `) as

well as future productivity changes.

Joint surplus and wage determination. Generalized Nash bargaining implies that worker-employer

pairs set wages by maximizing the Nash product. Even though the marginal utility of a dollar differs

between workers and employers due to housing consumption, Lemma 4 in Appendix B.2 shows that the

traditional microfoundation of generalized Nash bargaining with an alternative offers game à la Rubinstein

(1982) continues to hold in my environment.

Lemma 4 lets me restrict attention to a single object that I call the adjusted surplus, defined as

S(y, `) = J(y, `) + r(`)ω
(
V (y, `)− U

)
. (7)

The adjusted surplus is independent from wages because it puts each side’s value on a common numeraire

scale. Appendix B.1 shows that it follows a recursion similar to that of employers. Lemma 4 then states

that wages split the adjusted surplus into constant shares:

r(`)ω
(
V (y, `)− U

)
= βS(y, `), J(y, `) = (1− β)S(y, `). (8)

In particular, both sides agree to break up the match when the adjusted surplus drops to zero. In that

case, a separation occurs. Existing matches therefore solve a forward-looking optimal stopping problem,

which is detailed in Appendix B.2. I characterize its solution in the following Lemma.

Lemma 1. (Adjusted surplus)

There exists a unique adjusted surplus, given by

S(y, `) =
`y(`)

y
0

S
(

y

y(`)

)
, ∀y ≥ y(`),

and S(y, `) = 0 for y ≤ y(`), where

ρ
y(`)

y
0

= b+ v(`), v(`) =
f(`)r(`)ωE`[max{V (y0, `)− U, 0}]

`
, S(Y ) =

τY + Y −τ

1 + τ
− 1,

and τ > 0, y
0
> 0 are transformation of ρ, δ, σ given in Appendix B.2.

Proof. See Appendix B.2.

The local equilibrium separation threshold y(`) increases as the value of unemployment relative to

housing prices, b+ v(`), rises. v(`) is the productivity-adjusted value of future employment opportunities
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to a worker. The value of future employment opportunities v(`) depends on the meeting rate f(`) and

the local mix of employers. The adjusted surplus S is an increasing function of current productivity

y relative to the local endogenous threshold y(`). The nonlinearity in the function S arises because of

the option value of separation, which rises as productivity y approaches the threshold y(`). Hence, the

adjusted surplus S satisfies both the value matching and smooth-pasting conditions at the threshold:

S(y(`), `) = ∂S
∂y (y(`), `) = 0.

Local reservation wages w(`) in efficiency units of local productivity ` satisfy

w(`) = w0y(`), (9)

where w0 = (1 − β)ρ/y
0

+ β follows from the wage equation (29) in Appendix B.2. When the local

separation threshold is higher, matches break up at higher productivity levels because workers value more

the option to search for a different job in the same local labor market relative to local housing prices.

Thus, the local reservation wage is higher.

The free mobility condition takes a simple form given reservation wages w(`):

U =
`w(`)

w0y0
r(`)ω

. (10)

Across locations, higher housing prices compensate for either higher productivity or higher reservation

wages. Employed workers do not move because their value exceeds the common value of unemployment.

With those results at hand, I describe in Section 2.3 below how spatial job loss and unemployment

differentials emerge, taking as given the spatial distribution of employer quality z(`). Section 2.4 then

discusses how the location decision of employers shapes the spatial distribution of employer quality z(`)

in equilibrium.

2.3 Equilibrium job loss and unemployment

Suppose for now that the spatial distribution of employer quality is given by some function z(`). At

this stage it can be exogenous or determined in equilibrium. In every location, the job losing rate

depends on three forces: the average starting productivity at new jobs, the productivity separation

threshold, and how fast productivity depreciates from the starting productivity down to the threshold. The

productivity depreciation rate is governed by the productivity process (4) and is constant across locations

by assumption. Therefore, any differences in local job losing rates must arise because of differences

between the average starting productivity and the separation threshold. Both are related to local quality

z(`) and the reservation threshold y(`).

To determine exactly how many workers lose their job per unit of time, it is necessary to solve for the

invariant distribution of employment across productivities in each location `. Denote g(y, `) its density

function. In steady-state, g(y, `) solves the Kolmogorov Forward Equation (KFE),

0 = (L∗yg)(y, `) + n(`)g0(y, `), y > y(`), (11)

where g0(·, `) is the density associated with the entry distribution G0(y0|z(`)), which in turn depends on

the quality of jobs z(`) that open in location `. n(`) is the equilibrium inflow of unemployed workers into
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employment. The operator L∗y encodes how productivity shocks shape the distribution, and is given by

(L∗yg)(y) = −
(
σ2

2
− δ
)
∂

∂y

(
yg(y, `)

)
+
σ2

2

∂2

∂y2

(
y2g(y, `)

)
.

By construction, the density g integrates to unity in each location: 1 =
∫∞
y(`) g(y, `)dy. Brownian shocks

imply that the distribution satisfies the boundary condition g(y(`), `) = 0.25

To facilitate exposition, I assume that the starting distribution G0 is Pareto in the main text. I require

that the lower bound of its support is low enough that y(`) ≥ Y in all locations. I show that the Pareto

assumption is empirically plausible in Section 2.6. Nonetheless, I also provide more general distributional

conditions under which my results hold in Supplemental Material E.5.

Assumption 1. (Initial productivity distribution)

The conditional starting distribution is Pareto with support [Y,+∞), with Y ≤ by
0
/ρ:

G0(y0|z) = 1−
(
Y

y0

) 1
z

, z ∈ (0, 1).

Lemma 2 solves the KFE (11) under Assumption 1. Supplemental Material E.4 reports its general solution.

Lemma 2. (Employment distribution)

Let κ = 2δ
σ2 . Under Assumption 1, the solution to the KFE (11) with g(y(`), `) = 0 satisfies

g(y, `) =
κ

κz(`)− 1

1

y

[(
y

y(`)

)− 1
z(`)

−
(

y

y(`)

)−κ]
, ∀y ≥ y(`).

Proof. See Appendix B.3.2

The invariant distribution has two components. The first component reflects the productivity dis-

tribution of new jobs. The invariant distribution inherits the right tail from the starting distribution

1/z(`). The right tail is thicker in locations with high quality z(`). The second component reflects the

productivity process. When the negative drift δ is higher, κ is higher, implying that the distribution

is more left-skewed as productivity depreciates faster. When volatility σ is higher, κ is lower and the

distribution is more right-skewed: more jobs receive large positive shocks, while large negative shocks are

truncated due to endogenous job loss. Finally, the entry rate n does not appear because it simply scales

the overall measure of employed workers, as in Hopenhayn and Rogerson (1993).

The equilibrium local job losing rate s(`) (or separation rate into unemployment) follows from the

invariant distribution in location `. The job losing rate depends on how many workers are close to the

threshold in every location and the volatility of shocks:

s(`) =
σ2y(`)2

2

∂g

∂y
(y(`), `). (12)

25In a small time period, the Brownian motion shocks dominate the negative drift. Because these shocks are symmetric,
half of the workers close to the threshold are pushed into unemployment in any small time period. Compounded over a
non-zero time interval, this process leaves no workers at the threshold. Although it is a standard mathematical result, a
formal proof is provided for completeness in Supplementary Material E.3.
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Appendix B.3.1 proves this standard accounting result for completeness. Close to the threshold, only

workers who receive a negative shock become unemployed. The second order contribution of the measure

of workers close to the threshold ∂g
∂y (y(`), `) then shapes the number of job losers, because g(y(`), `) = 0.

Combining expression (12) for the local job losing rate with the solution to the distribution in Lemma

2 produces a simple solution for local labor market flows. The main text reports the expression under

Assumption 1. Proposition 8 in Supplemental Material E.4 describes the general solution.

Proposition 1. (Spatial unemployment differentials)

Under Assumption 1, the local job losing, finding and unemployment rates in location ` are

s(`) =
δ

z(`)
, fR(`) = f(θ(`))×

(
Y

y(`)

) 1
z(`)

, u(`) =
s(`)

s(`) + fR(`)
.

Proof. See Appendix B.3.3

When the negative drift δ is higher, productivity depreciates faster everywhere and job losing rates rise

uniformly. In locations with low quality z(`), new jobs draw from a left-skewed productivity distribution

and enter close to the equilibrium threshold y(`). They fall below the threshold early on and the local

job losing rate is high. Where quality z(`) is high, jobs start far from the threshold y(`). There, it takes

more time for productivity to depreciate and the job losing rate is low.26

Of course, the reservation threshold y(`) depends on quality z(`) in equilibrium. But the threshold

rises less than one-for-one with quality because of discounting. Unemployed workers must search for some

time before finding a job and earning wages comparable to those of employed workers. The strength

of this discounting effect thus increases with the discount rate ρ and decreases with the equilibrium job

finding rate fR(`) as shown in Appendix B.4.3.

Two forces in turn shape the job finding rate fR(`): the worker meeting rate f(θ(`)) and the probability

that a given meeting results in a job, the success probability of a meeting
(
Y
/
y(`)

)1/z(`)
. Whether these

forces closely balance depends on the cross-sectional patterns of labor market tightness θ(`) and employer

quality z(`). In equilibrium, they are determined by the location choice of employers.

2.4 The location choice of employers

An employer with quality z contemplates the expected value from entering in each location, and chooses

the location that delivers the highest payoff. After matching at rate q(`), the employer receives a share

1− β of the adjusted surplus. The expected payoff of employer z in location `, J̄(z, `), then follows from

integrating over the initial productivity distribution G0(y0|z):

ρJ̄(z, `) = q(`)(1− β)

∫
S(y0, `)G0(dy0|z). (13)

26The volatility σ does not affect the job losing rate. When volatility rises, matches receive larger negative shocks, pushing
them to break up more frequently. But matches also receive larger positive shocks, raising the option value of producing and
lowering the threshold. With a Pareto entry distribution, both channels exactly offset each other.
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Under Assumption 1, I show in Appendix B.4.1 that the expected payoff of employer z in location `

satisfies

log
((
ρ̄J̄(z, `)

) z
1−z
)

=
z

1− z
log S̄(z)︸ ︷︷ ︸

Absolute
advantage

+
z

1− z
log `︸ ︷︷ ︸

Production
complementarities

+
z

1− z
log q(`)︸ ︷︷ ︸

Pooling
complementarities

− logw(`)︸ ︷︷ ︸
Cost of
labor

, (14)

where ρ̄ = ρ+ β
1−βy0

and S̄(z) = (Y/w0)1/z z
1−z

τz
τz+1 .

Four forces shape how employers value different locations. The first term on the right-hand-side of

equation (14) encodes the absolute advantage of employers according to their job quality z. High quality

jobs draw from a better starting distribution, have higher productivity on average and earn higher profits

everywhere. This term does not affect the location choice of employers.

The second term reflects standard technological complementarities in production. Some locations may

be particularly well-suited for production for reasons unrelated to labor market frictions. The production

function implies that more productive employers benefit relatively more from high local productivity `.

As a result, they value locating in highly productive locations more than unproductive employers.

The third term in equation (14) lies at the core of the mechanism this paper uncovers. It reveals that

more productive employers value relatively more locations where recruiting is easy—where the vacancy

meeting rate q(`) is high. Because more productive employers generate higher profits, waiting longer until

they meet a worker and start producing is relatively more costly for them. Higher foregone profits thus

translate into a higher opportunity cost of time for more productive employers.27

The vacancy meeting rate q(`) = mθ(`)−α depends on local labor market tightness θ(`) in equilibrium.

Ultimately, it depends on the pool of employers and workers who choose to locate in `. Therefore,

I follow Marshall (1920)’s terminology and call the complementarity between employer quality z and

local recruiting conditions q(`) a labor market pooling complementarity. In contrast to technological

complementarities in the assignment literature without frictions, the pooling complementarity emerges

because the location choice of heterogeneous employers interacts with local labor market frictions.

The fourth term in equation (14) simply reflects the expected cost of labor in a particular location `,

which can be summarized by the reservation wage w(`). All employers prefer locations with low labor

costs where the reservation wage is low.

An employer with quality z thus solves

`∗(z) = argmax
`

z

1− z
log `+

z

1− z
log q(`)− logw(`). (15)

Employers face a trade-off between local productivity, recruiting conditions and wages. The tech-

nological complementarity implies that more productive employers are willing to pay more to locate in

places with high productivity. There, unproductive employers are priced out by high wages and locate

instead in low-productivity places.

The pooling complementarity implies that more productive employers are willing to pay more to

locate in places with favorable recruiting conditions. There, unproductive employers are priced out

27Some meetings do not result in a viable match, so that the vacancy filling rate and the vacancy meeting rate differ.

The probability that a meeting results in a match,
(
Y
/
y(`)

)1/z
, depends on both the employer type z (first term in equation

(14)) and on local reservation wages w(`) through the separation threshold y(`) (last term in equation (14)).
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by high wages. At the margin, they self-select into low wage areas with low vacancy meeting rates.

Importantly, the pooling complementarity determines employer sorting conditional on local productivity

`. Unconditionally, both local productivity and recruiting conditions drive location decisions, and sorting

patterns are more complex.

The differential valuation of locations by different employers plays the role of single-crossing condi-

tions. Although employers face a dynamic optimal stopping problem in each location, Lemma 1 simplifies

location decisions to equation (15), which resembles standard static assignment problems. Apart from

the underlying dynamic production decision, another distinction with static assignment problems arises.

Traditional assignment problems resolve the sorting between two-sided markets with exogenous payoffs.

By contrast, in the present model, local labor markets clear through the adjustment of labor market tight-

ness θ(`). The latter in turn feeds back into recruiting conditions, adding an additional layer of general

equilibrium effects to the payoffs that determine the assignment. This feedback acts as an agglomeration

force, with two implications. First, cities with different ex-post characteristics emerge in equilibrium even

in the absence of ex-ante heterogeneity. Second, well-known multiplicity issues may arise.28

I define an assignment pair as a pair of functions ` 7→ (z(`), w(`)), where z(`) is the assignment function

of employers to locations. It is the inverse of `∗(z). In this paper, I call z(`) the assignment function,

while M is the matching function that determines meetings in the labor market. w(`) is the equilibrium

reservation wage that supports this location choice. Proposition 2 below characterizes the assignment.

Proposition 2. (Sorting)

Impose Assumption 1. Fix the equilibrium value of unemployment U and the measure of new jobs Me.

There exists a unique solution ` 7→ (z(`), w(`)) to (15) among all possible assignments with increasing

z. There exists a threshold α > 0 such that for all α ∈ [0, α], this solution is unique among all possible

assignments. z and w are strictly increasing. In addition, the job losing rate s(`) is decreasing in `.

Proof. See Appendix B.4.4.

Proposition 2 establishes existence of the assignment with positive assortative matching between local

productivity ` and employer quality z: more productive employers go to more productive locations.

Restricting attention to assignments that exhibit positive assortative matching is only a mild restriction,

for two reasons. First, positive assortative matching is the only possibility when the matching function

elasticity α is not too large. Proposition 9 in Supplemental Material E.5 extends this result to more general

distributional conditions for G0. Second, any other potential steady-state assignment is dynamically

unstable for any value of α, in a sense made precise in Proposition 10 in Supplemental Material E.6.

The spatial sorting of employers immediately implies that job losing rates s(`) = δ/z(`) given in

Proposition 1 are decreasing in local productivity `. This monotonicity property equips the model to

account for large dispersion in job losing rates across local labor markets.

The equilibrium response of local reservation wages w(`) sustains the assignment. Reservation wages

adjust up to the point where the marginal employer z(`) is indifferent between locations ` and ` + d`.

Reservation wages reflect expected future wages conditional on starting work, which depend on equilibrium

28See Sattinger (1993), Topkis (1998), Villani (2003), Galichon (2016) and Davis and Dingel (2020) for standard assignment
models. Gaubert (2018) generates differences across cities when employer technology depends directly on population. See
Grossman and Rossi-Hansberg (2012) for multiple equilibria in a spatial context with agglomeration economies. See Chade
and Eeckhout (2019) for multiplicity in a search and matching context.
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employer quality z(`). Therefore, reservation wages rise with `. However, recall that reservation wages

rise less than one-for-one relative to wages of employed workers due to discounting.

Worker mobility limits the variation in both components of job finding rates fR(`) = f(θ(`)) ×(
Y
/
y(`)

)1/z(`)
given in Proposition 1. Even though high quality employers value slack labor markets at

the margin, workers out-migrate from locations with excessively slack labor markets. Thus, there can

be only limited spatial variation in worker meeting rates f(θ(`)). Similarly, the sucess probability of

meetings
(
Y
/
y(`)

)1/z(`)
reflects offsetting forces. Locations with high quality employers z(`) tend to have

higher success probabilities of meetings because jobs start out further away from any given threshold

y(`) = w(`)/y
0
. There, however, workers are also more selective and have high reservation thresholds

y(`). These forces need not offset each other exactly, but when they nearly do, the job finding rate is

close to flat across locations.

2.5 Equilibrium and comparative statics

Having described how the location choice of employers shapes spatial unemployment differentials, I close

the economy in the decentralized equilibrium. Local housing and labor markets clear in each location `:

r(`) = ωL(`)
(
u(`)b`+ (1− u(`))w(`)

)
, θ(`) =

MeF
′
z(z(`))z

′(`)

u(`)L(`)F ′`(`)
, (16)

where L(`) is population in location `, and w(`) =
∫
w∗(y, `)g(y, `)dy is the average wage in location `.

Local housing prices reflect local expenditures on housing. Labor market clearing simply states that

labor market tightness is the ratio between the number of vacancies and the number of unemployed workers

in locations with productivity `. The number of unemployed workers is the unemployment rate times

total population across the F ′`(`)d` locations with productivity in [`, `+ d`). The number of vacancies in

a location reflects the total number of new jobs, Me, but also the spatial sorting of employers. There are

fewer employers in locations where the assignment function z is steep. In that case, a given measure of

employers is stretched across a wider set of locations.

Employers enter freely each period, so that the cost of entry is equal to the expected value from

entering. Population in the economy adds up to unity:

ce =

∫
J̄(z, `∗(z))dFz(z), 1 =

∫
L(`)dF`(`). (17)

A decentralized equilibrium is comprised of a measure of entering employers Me, a value of unem-

ployment U , an assignment function z(`), a reservation wage function w(`), wages of employed workers

w∗(y, `), an employment distribution g(y, `), a distribution of unemployment u(`) and market tightness

θ(`), housing prices r(`), and a population distribution L(`), such that (5), (6), (8), the definitions in

Lemma 1, (9), (10), (15), (11), (12), (16), and (17) hold. Proposition 3 guarantees that there exists a

unique steady-state equilibrium with positive assortative matching, when there is not too much dispersion

in spatial and productivity primitives.

Proposition 3. (Existence and uniqueness)

Under Assumption 1, there exists a decentralized steady-state equilibrium with positive assortative match-

ing. There exist dz, d` > 0 such that, for |z − z| < dz and |`− `| < d`, the equilibrium is unique.

20



Proof. See Appendix B.5.

I shed further light on how the labor market pooling complementarity shapes spatial unemployment

gaps using a particular limiting equilibrium and Proposition 3. Suppose that ex-ante spatial differences in

` become arbitrarily small. In that case, the pooling complementarity alone drives sorting and any ex-post

differences across locations. Corollary 1 below shows that spatial gaps in job losing and unemployment

rates arise even in the absence of any ex-ante heterogeneity between locations.

Corollary 1. (Equilibrium spatial gaps with ex-ante identical locations)

Suppose that the conditions in Proposition 3 hold and that the matching function elasticity α is strictly

positive. Then the variance of local job losing and unemployment rates remain strictly positive and bounded

above zero as the variance in exogenous differences ` goes to zero.

Proof. See Appendix B.6.

This result highlights that the pooling complementarity suffices to sustain sorting in equilibrium,

irrespectively of technological complementarities.29 When technological differences ` vanish, locations are

ex-ante identical and ex-post differences emerge endogenously. In particular, job losing and unemployment

rates differ across locations. This is possible because housing prices adjust in the background to allow

differences in reservation wages. By contrast, if housing played no role ω = 0, all locations would become

ex-post identical because free mobility (10) would equalize reservation wages across locations.

Propositions 1, 2, 3 and Corollary 1 conclude the positive implications of the theory. Before turning

to its normative implications, the next section proposes reduced-form empirical evidence supporting the

key mechanisms that determine job losing and finding rates in the model.

2.6 Model validation

This section provides empirical support for two crucial mechanisms. The first mechanism is the link

between labor productivity and job losing rates. The second mechanism is the response of labor market

tightness that determines job finding rates.

Labor productivity and job losing rates. The productivity process (4) and the distribution in

Lemma 2 deliver testable implications linking labor productivity to job losing rates.

Corollary 2. (Labor productivity and job losing rates)

1. Matches with higher labor productivity are less likely to separate into unemployment in all locations.

2. Log labor productivity growth of incumbent jobs is independent from location.

3. Average log labor productivity is higher in locations with lower job losing rates.

4. The labor productivity distribution first-order stochastically decreases with local job losing rates.

5. The labor productivity distribution has a Pareto tail with index 1/z(`) in each location.
29The limit of arbitrarily small differences selects one particular equilibrium in the limit without any exogenous spatial

heterogeneity. When exogenous spatial differences are exactly zero, locations can be arbitrarily reshuffled. There are only
two possible spatial distributions of equilibrium outcomes: the mixing distribution in which all locations are identical, and
the separating distribution in which locations differ due to sorting. Taking the limit under vanishing spatial heterogeneity
always selects the separating distribution. In addition, the mixing distribution is trembling-hand unstable.
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Figure 4: Labor productivity, job loss and labor market tightness in France.

(a) Job loss by employer productivity.
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(b) Labor productivity distributions.
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(c) Labor market tightness.
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Note: Figure 4(a) scatterplots the employment-to-unemployment transition probabilities for workers, across percentiles of their em-
ployer’s labor productivity. Figure 4(b) plots empirical cumulative labor productivity distribution functions in the bottom and top
quartiles of commuting zones, ranked by job losing rate. Vertical lines mark within-quartile averages of labor productivity. Figure
4(c) scatterplots two measures of log labor market tightness across 8 groups of French commuting zones c. Blue circles represent the
raw measure of labor market tightness without job-to-job adjustments: θc = Vc/Uc, where Vc is the number of vacancies and Uc the
number of unemployed workers. Orange dots represent the adjusted measure that include employed workers as effective job seekers:
θ̃c = Vc (Uc + ξEc), where Vc is the number of vacancies, ξ the relative search efficiency of employed workers, and Ec the number of
employed workers.

6. The ratio of Pareto tails indices equals the ratio of job losing rates between locations.

Proof. See Appendix B.7.1.

To test implications 1 to 6, I compute labor productivity in single-establishment firms using the

firm-level balance sheet data described in Section 1.1. Figure 4(a) tests implication 1. It scatterplots

job losing rates for workers across percentiles of their employer’s labor productivity. Consistent with

persistence in the productivity process (4) that ties together the productivity of a match at a given point

in time and the probability of job loss, matches at more productive employers are more stable. Table 7 in

Appendix B.7 correlates labor productivity growth with local job losing rates. Consistent with a single

productivity process across locations and implication 2, there is no evidence of systematic variation of

labor productivity growth.

Figure 4(b) tests implications 3 and 4. It displays the labor productivity distribution in the bottom

and top quartiles of commuting zones, ranked by their job losing rate. The vertical lines are local averages.

Consistent with implication 3, average labor productivity is higher in locations with low job losing rates.

Consistent with the more subtle implication 4, the cumulative distribution function of labor productivity

in low job losing rate locations is always below the cumulative distribution function in high job losing

rate locations: the labor productivity distribution first-order stochastically decreases with the job losing

rate. Figure 14 in Appendix B.7 provides empirical support for implications 5 and 6 and therefore the

Pareto assumption.

Labor market tightness. Proposition 1 delivers a single robust prediction for labor market tightness:

spatial variation in labor market tightness must be small relative to spatial variation in job losing rates.
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Otherwise, job finding rates would vary too much relative to the data.

Should tightness correlate positively or negatively with local unemployment? The answer is ambiguous

in general. Corollary 1 indicates that, without any variation in local fundamentals ` across locations,

tightness and unemployment should be positively correlated as the labor market pooling complementarity

pulls stable jobs towards slack labor markets. Corollary 1 is an extreme case however. When firms sort

based on local fundamentals ` as well as the labor market pooling complementarity, the correlation

between tightness and unemployment can take any sign. In fact, I show numerically in Section 4.1 that

the model can generate both positive and negative correlations depending on parameter values.

I use establishment-level vacancy data from France to evaluate the cross-sectional variation in labor

market tightness. I correct for job-to-job search and construct tightness using effective job seekers to be

consistent with the model.30

Figure 4(c) reveals that the cross-sectional dispersion in tightness is unambiguously small relative to

the variation in job losing rates in Figure 2(a), regardless of the job-to-job correction. The variation in

tightness is similar to that in job finding rates in Figure 2(b). If anything, labor market tightness after

the job-to-job correction correlates positively with local unemployment rates. Without the correction,

the correlation is negative. Thus, the correlation between tightness and unemployment remains largely

ambiguous both theoretically and empirically.

2.7 Efficiency and planning allocation

Having validated the positive implications of the model, this section investigates its normative properties.

A utilitarian planner maximizes a possibly weighted sum of values of all individuals in the economy,

taking search frictions as given.31 The planner decides where to send workers to search for jobs and

when to break up matches. The infinite-dimensional distribution of employment across productivities

and locations is a state variable because idiosyncratic productivity shocks are persistent. Nevertheless,

I establish a well-defined planner problem building on Moll and Nuño (2018) in Supplemental Material

F.1.1. For brevity, I simply characterize its solution in the main text. Denote with SP superscripts

variables in the planning solution, and with DE superscripts variables in the decentralized equilibrium.

Proposition 4. (Planning solution)

• Sorting (Proposition 2), local labor market flows (Proposition 1), and existence and uniqueness

(Proposition 3) results extend to the planning solution under the same conditions using Negishi

utility weights from equation (55).

• The decentralized equilibrium is inefficient for all values of α, β ∈ (0, 1].

• Suppose β = α. Under the conditions of Proposition 3, for all `:

◦ zSP (`) ≥ zDE(`) with equality if and only if ` ∈ {`, `}.
◦ ∂ logwDE

∂` (`) > ∂ logwSP

∂` (`).

30In the data, employed workers capture a sizable fraction of vacancies, while in the model only unemployed workers apply
to vacancies. Therefore, I estimate the relative search intensity of employed workers ξ in Supplemental Material E.7. I then
adjust the number of effective job seekers to compute labor market tightness in city c: θ̂c = Vc

Uc+ξEc , where Vc is the number
of vacancies, Uc the number of unemployed workers, and Ec the number of employed workers.

31Because the planner can reallocate the final good across locations while workers can only consume their income in the
decentralized equilibrium, only one set of utility weights delivers planning allocations that may coincide with the decentralized
equilibrium. They are standard Negishi weights and defined in equation (55), Supplemental Material F.1.
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• The planning and decentralized equilibrium allocations coincide when search is directed.

Proof. See Supplemental Material F.1.2.

Proposition 4 first establishes that the basic sorting, labor market flows, existence and uniqueness

properties of the decentralized equilibrium also hold in the planning solution. To interpret the normative

implications of Proposition 4, recall that in a single-location search model such as Mortensen and Pissarides

(1994), the only sources of inefficiency are the entry and separation margins. Both margins are efficient

only when employers are compensated for opening and shutting down jobs by exactly as much as they

congest the matching function. This is the case when the Hosios (1990) condition α = β holds. The same

logic carries through to the multi-location model for the overall entry and separation decisions.

With geography, employers make an additional location decision. When employers enter a local labor

market, the composition of local competitors impacts their ability to recruit: they are pooled in the same

matching function. The labor market pooling complementarity in equation (14) embeds this externality.

This externality ultimately distorts the location decisions of employers regardless of whether the Hosios

(1990) condition α = β holds. Thus, I call it a labor market pooling externality.

To understand the nature of the labor market pooling externality, first recall the composition exter-

nality that arises when different employers compete in the same labor market as in Acemoglu (2001).

Consider two locations `1 < `2. Each location is populated with employers z1 = z(`1) < z(`2) = z2.

Consider a marginal employer z ∈ (z1, z2) contemplating entry in locations `1 or `2. If employer z enters

in location `2, it is worse than the average local employer. Due to labor market frictions however, it meets

as many workers as its more productive competitors. This composition externality is socially harmful,

as workers are redirected towards a less productive employer, z < z2. Symmetrically, entrant z meets as

many workers as its less productive competitors if it enters in location `1. The composition externality is

socially beneficial in this case, as workers are redirected towards a more productive employer, z > z1.

The labor market pooling externality materializes once employers decide where to locate. It is a

spatial manifestation of the composition externality in Acemoglu (2001), although all locations have a

single employer quality in equilibrium. Consider the private and the planner’s values of entry of job z in

a particular location. Conditional on the separation threshold y(`), they satisfy

(
J̄DE(z, `)

J̄SP (z, `)

) 1−α
α

=
S(zDE(`))

S(z)
·
(
Y/y(`)

) 1

zDE(`)
− 1
z
. (18)

where S(z) is increasing and defined in Appendix B.4.1. The planner’s valuation of opening job z in

location ` only depends that particular job quality z. The planner internalizes that it is suboptimal to

pool different employers in the same local labor market and chooses as if all jobs of the same quality

located identically. By contrast, the private value from entering in the same location ` for job z also

depends on the quality of local competitors zDE(`). Private employers take their competitors’ location

decisions as given, which determine the local vacancy meeting rate in equilibrium.

Every employer z has an incentive to free-ride favorable recruiting conditions in better locations than

the planner’s choice. Indeed, the vacancy meeting rate of employer z does not reflect that employer z is

worse than its competitors in locations where z < zDE(`). In equation (18), zDE(`) is increasing, leading

employers to over-value opening jobs in locations where other employers are productive. This free-riding
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incentive emerges off equilibrium since all locations end up with a single employer type in equilibrium.

Yet, on net, employers concentrate too much in the best labor markets relative to the social optimum. The

labor market pooling externality trickles down across locations and generates misallocation throughout the

economy. Reservation wages rise faster in equilibrium than the planner’s shadow value. For any location

`, local employers are not productive enough in the decentralized equilibrium, and zDE(`) ≤ zSP (`).

The labor market pooling externality rests on the assumption that matches are formed with some

degree of randomness. In that case, wages are bargained after matches are formed. This lack of com-

mitment prevents wages from fully pricing meeting rates. By contrast, the decentralized equilibrium is

efficient when search is fully directed. In that case, the key assumptions are that employers can commit to

contracts, and that workers can frictionlessly arbitrage between contracts in segmented submarkets within

each location. Employers then internalize that by entering in a local labor market with higher quality

than their own, they depress their meeting rate as workers direct their search away towards the more

productive jobs. As a result, wage contracts exactly price congestion effects, which leads to efficiency.

Whether search is directed or random is ultimately an empirical question with data requirements that go

beyond the scope of this paper. In principle, reality is likely to lie between both models.

Nevertheless, I propose two checks to lend credibility to this paper’s welfare implications. First, I

allow employers to post many vacancies in the extended model of Section 3.1. More productive employers

post more vacancies than less productive ones. Thus, they meet with relatively more workers, mitigating

the strength of the externality, akin to directed search. The vacancy cost elasticity then determines where

the model lies between random and directed search. At the estimated elasticity, I find large welfare

effects from place-based policies. Second, Table 1 in Section 4.1 shows that re-estimating the model

under the directed search assumption delivers too little dispersion in local unemployment rates relative to

the data and misses the variance decomposition into job losing and finding rates described in Section 1.

The directed search model lacks the labor market pooling externality, which increases the incentives for

productive employers to co-locate. Thus, spatial sorting is weaker and job losing and unemployment rate

differentials are smaller under directed search. Conditional on the rest of the model and in this spatial

context, the data thus supports the random search assumption among those two extreme cases.

2.8 Optimal policy

Given that the decentralized equilibrium does not attain the first best, a natural question is whether

it can be restored using standard policy instruments. An optimal policy should achieve the following.

First, it should correct the pooling externality by incentivizing employers to open jobs in low profitability

locations. Second, it should enforce the Hosios (1990) condition. I introduce place-based policies into the

model in Supplemental Material F.2. Proposition 5 shows that they can implement the first best.

Proposition 5. (Optimal policy)

Constrained efficiency is restored with a combination of place-based policies:

• A labor subsidy increasing in local productivity ` if and only if β < α.

• A profit subsidy τ∗ decreasing in local productivity `. Under the conditions of Proposition 3 and

when α is small enough, to first order: τ∗(`2)
τ∗(`1) =

(
sDE(`2)
sDE(`1)

) rα
1−α

, where r is a general equilibrium

constant.
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• A lump-sum transfer to owners.32

Proof. See Supplemental Material F.2.

The labor subsidy implements the Hosios (1990) condition. As in Kline and Moretti (2013), spatial

variation in workers’ value of search makes that policy place-specific. Similarly to their results, labor

needs to be taxed more heavily in low productivity locations on the empirically relevant side of the Hosios

(1990) condition β < α. Because this particular trade-off has been extensively studied, I focus primarily

on the externality in the location choice of jobs.

A profit subsidy—or corporate tax credit relative to a base rate—is the simplest way to correct the

spatial misallocation that results from the labor market pooling externality. The profit subsidy corrects

the labor market pooling externality that equation (18) obviates. Subsidies rise as local productivity

` diminishes. Hence, subsidies are more generous in locations with high job losing rates s(`) as per

Proposition 1. The local job losing rate thus provides a sufficient statistic for the direction of optimal

place-based policies.

Proposition 5 provides a formula for the optimal policy under additional restrictions. The optimal

policy depends on few parameters and outcomes. The profit subsidy τ∗ is increasing in the job losing

rate with a combined elasticity rα
1−α that rises with the matching function elasticity α. When α = 0,

recruiting conditions are exogenous, there is no labor market pooling externality and so there is no need

for policy. The combined elasticity also depends on a constant r that captures the surplus and success

probability elasticities consistently with equation (18). This constant r ultimately depends on parameters

of the productivity process and the observed success probability, and turns out to be close to 2 in the

estimated model of Section 3.1. Although the closed-form formula holds only under additional restrictions,

it provides a reasonable approximation to the exact optimal policy as shown in Figure 16, Appendix C.13.

The optimal policy thus resembles real-world place-based policies that target areas with high job

losing and unemployment rates. For instance, the Empowerment Zone program in the United States and

its French equivalent—the “Zones Franches Urbaines”—both grant large effective corporate tax credits

for firms that open jobs in distressed areas. The labor market pooling externality offers a structural

justification for subsidizing these high unemployment areas: high productivity employers fail to internalize

their positive labor market spillovers there. To the best of my knowledge, this is the first paper to propose

a structural justification for such policies based on frictional labor markets and two-sided mobility of

workers and employers.

In practice, profit subsidies raise clear concerns of fiscal optimization and profit-shifting between

establishments within firms. Can the first best be attained with employment, wage or value added tax or

subsidies alone? I explore alternative tax schemes in Supplemental Material F.2. A value added subsidy

restores the efficient location decisions provided its distortive effects on job creation and separations are

offset by wage or unemployment subsidies. Yet, value added subsidies are subject to similar concerns to

profit subsidies. Employment and wage subsidies alone cannot restore efficiency. They affect the location

decision of employers through reservation wages, thereby distorting job creation and separation.

These differences between different subsidies can help rationalize why the evidence on place-based

policies remains ambiguous. If the mix of actual subsidies changes from case to case, the results in

32Alternatively, if there are no absentee owners and profits are rebated to workers with a flat earnings subsidy, then a flat
earnings tax replaces the lump-sum tax on owners.
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Supplemental Material F.2 indicate that effects should be variable. I leave the design of a robust subsidy

scheme to fully or at least partially correct the labor market pooling externality for future research.

Instead, I focus on the optimal profit subsidies to highlight the potential gains from place-based policies.

So far the spatial and individual heterogeneity in the model has remained minimal. To quantitatively

account for local labor market flows and the welfare effects of place-based policies, I enrich this baseline

framework in Section 3 below.

3 Extended model and estimation

In this section, I first describe the extensions of the model. I then establish how the results from Section

2 extend to the richer environment. Finally, I detail the estimation strategy, identification and validation.

3.1 Quantitative setup

Geography. Locations now differ both in productivity p and residential amenities a. Locations are

indexed by productivity-amenity pairs ` = (p, a) with cumulative function F` on a connected support.

This flexible parametrization of amenities captures unobserved physical or institutional attributes that

attract workers beyond labor and housing market conditions, such as pleasant weather, or high quality

schools and hospitals. Quantitatively, amenities let the model fit joint variation in population, wages,

and unemployment across places.

Housing supply. Perfectly competitive land developers now use the final good to produce housing on

a unit endowment of land with an isoelastic production function. The resulting housing supply curve

H(r(`)) = H0r(`)
η flexibly captures local congestion from housing prices.33

Migration frictions. Workers now receive the opportunity to move at Poisson rate µ ≥ 0. When hit

by this moving opportunity, they draw a set of Frechet-distributed preference shocks for locations {ς`}`
with shape parameter 1/ε, and choose where to locate. Those shocks stay constant until the next moving

opportunity arrives. 1/ε then governs the migration elasticity to real income differences.34

Preferences. The flow utility function becomes u(c, h, a, ς) =
(

c
1−ω

)1−ω (
h
ω

)ω
aς, where ς denotes the

product of all past taste shocks the worker received for locations they chose.35

Non-participation. Workers now exit the labor force at Poisson rate ∆ > 0. When they do, a single

new worker replaces them.

Scarring effects and human capital. Workers now differ in their time-varying human capital k.

When employed, human capital grows at rate λ ≥ 0. When unemployed, human capital grows at rate λ−ϕ.

33The distribution of location types F` together with unit land in each location can capture long-run land use policies
such as zoning restrictions in a stylized way. Zoning restrictions manifest in part as a limited supply of high-productivity
locations. The model captures this pattern if the distribution F` puts low mass in high-` places.

34The shifter is normalized to 1/Γ(1− ε), where Γ is Euler’s Gamma function, because it is not separately identified from
amenities a. This normalization ensures that preferences shocks have mean 1. Supplemental Material G.4 extends standard
discrete choice results to a continuum of locations.

35As in Desmet et al. (2018) and Caliendo et al. (2019), ςt =
∏Nt
i=1 ςti(`ti), where (ti)

Nt
i=1 denote times when workers

received migration opportunities between calendar times 0 and t.
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The scarring rate ϕ ≥ 0 encodes the relative depreciation rate of human capital during unemployment.

For simplicity, the distribution of human capital of new workers kt shifts at rate λ.36 All workers in the

same location search in the same labor market: potential employers cannot discriminate between workers

with different human capital before meeting them.

Production. Employers now use housing in production, to capture that local congestion due to higher

population affects production costs. The production function becomes
(
ypk)

1
1+ψ h

ψ
1+ψ , where y is employer

productivity, p is location productivity, k is worker human capital, and h is housing.

Recruiting intensity. Employers can now adjust their recruiting efforts. This channel potentially

mitigates the strength of labor market pooling externalities. Employers with open jobs may post many

vacancies v at cost cv
1+1/γ v

1+1/γ .

3.2 Characterization

The extensions preserve the basic structure of the location choice of employers. Supplemental Material

G shows that, to a first order when migration opportunites are rare enough µ � 1 and the depreciation

rate of human capital is small enough ϕ� 1, the location choice of employer z in equation (15) becomes

argmax
(p,a)=`

z

1− z

{
log
(
pQa−ψP

)
︸ ︷︷ ︸

Exogenous
production & housing

complementarities

+ log
(
C
(
w(`), z(`)

)ψP)︸ ︷︷ ︸
Endogenous

housing
complementarity

+ log
(
k̄(u(`))Q

)
︸ ︷︷ ︸

Endogenous
human capital

complementarity

+ log q(`)︸ ︷︷ ︸
Endogenous

pooling
complementarity

}
− logw(`)︸ ︷︷ ︸

Endogenous
cost of
labor

.

.(19)

k̄(u(`)) in location ` = (p, a) denotes average human capital. Supplemental Material G.6 defines the

constants P > 0,Q > 0 and the function C.

Equation (19) highlights that three additional channels determine the location decision of employers

in the extended model. First, exogenous technological complementarities now also depend on amenities a.

Higher productivity still makes locations more lucrative for jobs. Yet, higher amenities reduce profitability

by bringing in more workers, raising housing prices and driving up production costs with elasticity ψ. I

identify a pair ` = (p, a) with the combined index of local advantage

`(p, a) ≡ pQa−ψP , (20)

since I will show that it is a sufficient statistic for the location choice of employers.

Second, the housing price channel also introduces an endogenous source of complementarity. The

function C(w(`), z(`)) encodes that local expenditures on housing increase with local wages, driving up

housing prices and thus operation costs of employers.

Third, employers internalize human capital differences across locations. Localized scarring effects of

unemployment imply that average human capital k̄(u(`)) is proportional to ∆
∆+ϕu(`) and thus decreases

36The rescaled distribution kte
−λt for new workers does not depend on calendar time t, and is denoted Fk. This assumption

can be microfounded if young workers learn from older workers before entering in the labor force. The economy is therefore
on a balanced growth path determined by λ. In levels, the distribution of knowledge of new workers is a “traveling wave
with constant shape.” I also assume that Fk has a density with full support equal to R+.
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with the local unemployment rate u(`). Human capital complements production, so that high quality

employers find it less profitable to enter in a location where workers have less human capital. There, only

low quality job open, further worsening unemployment in equilibrium. Human capital and scarring effects

thus play two roles. They microfound part of the production complementarities that were fully exogenous

in Section 2. They also add feedback effects linking unemployment and human capital in equilibrium.

Labor market pooling complementarities remain unchanged and still depend only on the local vacancy

meeting rate. Similarly, the expected cost of labor continues to be summarized by local reservation wages

w(`). Because the structure of the location choice of employers in equation (19) closely resembles its more

stylized version in equation (15), virtually all the analytical results from Section 2 carry through.

Proposition 6. (Characterization of the extended model)

To a first order when the migration rate µ and the scarring effects of unemployment ϕ are not too large,

Propositions 1, 2, 3, 4, 5 and Corollary 1 obtain in the extended framework under the same conditions, with

three modifications. First, replace the local unemployment rate by u(`) = s(`)+µ+∆
s(`)+µ+∆+fR(`) . Second, replace

` with the combined index of local advantage `(p, a). Third, population depends on the pair
(
`(p, a), a

)
:

L(p, a) ≡ L(`(p, a), a).

Proof. See Supplemental Material G.

Population cannot be summarized solely by the local advantage index `(p, a) because workers value

amenities directly, while employers value amenities through housing prices only. As a result, amenities

generate variation in population conditional on the local advantage index `(p, a). Supplemental Material

G.7 provides more details. With the extended framework at hand, I turn to the structural estimation.

3.3 Identification

Despite its rich structure, the quantitative model is transparent enough to produce estimating equations

for all but one of the parameters. No simulation is required until the last step, which estimates the

entry cost. This section discusses how to recover recursively each parameter given the data I choose.

This recursive scheme recovers parameters one after the other, so that parameters estimated early on do

not depend on estimates of parameters estimated later on. A proposition at the end of this subsection

summarizes the formal identification of the model. Different specific estimators are used for different

parameters, but all can be nested into an overarching Generalized Methods of Moments (GMM) estimator.

In total, there are 19 parameters to be estimated: ρ,∆, ω, ψ, δ, σ, β, b, Y, η, µ, ε, α, γ, cv,m, λ, ϕ, ce;

together with two distributions Fz, Fp,a. I first recover these distributions non-parametrically. Next, I

estimate functional forms to simulate counterfactuals, adding another 7 parameters.

The 26 parameters can be divided into three groups. Parameters in the first group—ρ,∆, ω, ψ,

µ, b, cv,m—directly map into empirical counterparts or can be normalized, thus only requiring simple

Minimum Distance Estimators (MDE). Parameters in the second group—δ, σ, β, Y, η, ε, α, γ, λ, ϕ—require

more involved estimating equations, together with different estimators. The third group of parameters

consists of distributional functional forms. The fourth group of parameters only contains the entry cost

ce, which is estimated by numerical search (Method of Simulated Moments). Before describing how to

estimate each group of parameters, I briefly discuss the data used to construct empirical targets.
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Data. I use data from France for all years between 1997 to 2007. A quarter is the time period [t, t+ 1).

Most of the estimation uses averages over the entire period. For some parameters, I split the sample into

two subperiods, with averages for 1997-2001 and for 2002-2007. I index locations (cities) in the data by

c. I use aggregate data for the household housing expenditure share. I measure expenditures on real

estate for firms in the firm-level balance sheet data. The DADS provide measures of local unemployment

rates uc, local job losing rates for stayers sc, local job finding rates for stayers fRc, local average wages

Wc, population shares Lc, and the aggregate mobility rate of workers. The DADS also enable finer

disaggregation of job losing rates and wages by tenure and location. I measure the average job offer

acceptance probability in the LFS. I obtain housing prices rc from the online realtor MeilleurAgents.com.

First group (8 parameters). The mobility rate for individuals transitioning into unemployment at

the same time directly identifies the moving opportunity rate µ.37 The labor force exit rate identifies ∆.

The interest rate identifies ρ through the effective discount rate of individuals ρ + ∆.38 The household

housing expenditure share ω maps into the value reported by INSEE, 23%.39 The employer real estate

expenditure share out of value added ψ maps into my estimate of 11%.40 The remaining parameters in

this first group can be normalized: b = cv = m = 1.41

Second group (10 parameters).

Productivity process δ and σ. I use data on job losing rates and wage growth by tenure to

estimate (δ, σ). I leverage a closed-form solution for the job losing rate in the first year in the model,

which follows from an explicit solution to the time-dependent KFE. The job losing rate in the first year

of a job in city c is s1(sc, δ̂). The function s1 depends on the average job losing rate sc that captures

the initial productivity distribution. s1 is decreasing in δ̂ = δ
σ given µ,∆. Intuitively, if the volatility σ

is much larger than the drift δ, many separations occur at early tenure. Details are in Appendix C.2.

Denoting s1c the measured job losing rate in the first year in city c, I recover δ̂ directly by estimating

s1c = s1(sc, δ̂) (21)

with Non-Linear Least Squares (NLLS), treating residuals as measurement error.

Given the estimated ratio δ̂ = δ
σ , the same solution to the time-dependent KFE enables to explicitly

compute wage growth by tenure when β is not too large. Appendix C.3 shows that it identifies the common

scale of δ, σ. Intuitively, when productivity depreciates faster, wages at continuing jobs fall behind wages

at new jobs at a faster pace. Thus, a regression similar to (21) estimates δ when β is small.42

37In the model, unemployed and employed workers always change location and enter unemployment when they receive
the moving opportunity at rate µ. With a continuum of locations, there is always a location with a high enough preference
draw. The moving rate must be time-aggregated quarterly.

38Although workers are not allowed to borrow or save in the model, ρ+∆ is their intertemporal marginal rate of substitution
and would coincide with the interest rate in a complete markets version of the model.

39INSEE’s calculations reflect both renters and homeowners.
40Balance sheet data lists all rental expenditures, as well as the book value of land, building and structures owned by the

firm. I annuitize the value of those properties using a 5% annual interest rate and add the annuitized value to the rental
expenditures. This defines expenditures on real estate.

41The unemployment income parameter b is not separely identified from productivity `. The shifter of the vacancy cost
function cv and the matching function efficiency are not separately identified from the entry cost ce.

42When β is large, δ and β are estimated jointly. At the estimated bargaining power β however, the difference is negligible.
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Bargaining power β. Wages relative to value added in location c are β + 1−β
H(sc)

, where H only

depends on δ and σ. I target aggregate wages relative to value added to identify β by MDE.

Learning and scarring rates λ and ϕ. Wage changes for workers coming out of unemployment

reflect human capital losses, which grow with unemployment duration. For worker i who loses their job

at time t0 and finds a new job at time t1 in location c, wages satisfy

logWict1 = (λ− ϕ)(t1 − t0) + Φc + logWict0 + υic, (22)

where υic is a mean-zero random variable that reflects draws from the local new job distribution, and

Φc is a location fixed effect. Hence, OLS consistently estimate λ − ϕ using equation (22) because new

productivity draws are independent from unemployment duration. Aggregate real wage growth identifies

λ directly. Thus, I recover ϕ. Details are in Appendix C.5.43

Local quality and threshold. For the remainder of the estimation, I recover estimates of the local

job quality zc and the local productivity threshold y
c

in each city c. They are equilibrium outcomes,

not fixed primitives of the economy. Given the estimate for δ, local job losing and finding rates directly

identify job quality and the threshold in each city as per Proposition 1,

zc =
δ

sc
, y

c
=
by

0

ρ̂

βfRcS̄(zc)

ρ̂− βfRcS̄(zc)
. (23)

where ρ̂ = ρ+ ∆ + µ+ ϕ− λ, and y
0

and the function S̄ can be calculated from known parameters.

Lower bound of initial productivity draws Y . The success probability of a meeting for workers

in city c is
(
Y
/
y
c

)1/zc in the model. I construct an empirical counterpart using data on job search behavior

from the LFS in Supplemental Material H. I estimate the average success probability for workers at 20.6%,

and find Y to match this target.44

Housing elasticity η. At this stage of the recursive scheme, housing prices in each city satisfy

log rc = r1 + 1
1+η log r0(Wc, Lc, uc, zc, yc), where Appendix C.7 details the known function r0. I then

obtain η with OLS, assuming that measurement error is the only residual.45

Migration elasticity 1/ε. Migration shares by destination πc satisfy

log πc = π0 +
1

ε
logU c + log ac (24)

43In practice, mechanisms left out from the model may generate endogeneity issues. To address those concerns, Table 8
in Appendix C.5 proposes several other specifications with more flexible controls (for instance, industry fixed effects, worker
fixed effects, past wage controls, employed workers as control group). The point estimate of ϕ remains stable around 1% per
quarter and statistically significant across specifications.

44Faberman et al. (2017) suggest an acceptance probability of 29.6% in the United States. Only this worker success
probability in the model maps transparently to data. Paying the entry cost ce and the productivity draw z define a job in
the model. Repeated draws of the same quality z after several unsuccessful meetings can correspond to situations where
employers interview several candidates for a given position.

45Omitted factors like heterogeneous housing supply elasticities may be a source of endogeneity. With repeated cross-
sections of housing prices, difference-in-difference specifications using shift-share shocks as instruments could be used to
correct for endogeneity. With only one cross-section, these approaches are not possible.
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where U c = wc
(1−β+βH(sc))rωc

can now be computed in the model, and π0 is a general equilibrium constant.

Unobserved amenities ac are correlated with U c. Hence, I split the sample into two subperiods 0 and 1

and first-difference equation (24). Then, I use local productivity shocks based on shift-share projections

of economy-wide industry shocks as instruments for the change log Uc,1

Uc,0
. I thus estimate 1/ε with Two

Stage Least Squares (2SLS) using (24) in first differences. I interpret the data in each subperiod as a

different steady-state of the model. The identification assumption is that economy-wide industry-level

shocks are orthogonal to local changes in amenities. I further discuss how to map industry-level shocks

into the model and the identification assumption in Appendix C.8.

Non-parametric distributions of local productivity, amenities and job quality. Equation

(51) in Appendix C.6 shows that local productivity pc follows from inverting the model’s predictions for

local wages. Given the migration elasticity estimate, inverting the population equation (65) in Supple-

mental Material G.5 then delivers an estimate of local amenities ac in each city. Together, the estimates

(pc, ac) provide a non-parametric estimate of the distribution Fp,a.
46 Appendix C.9 shows that the density

function of job losing rates across locations identifies the density function of job quality fz using (23).

Matching function and vacancy cost elasticities α and γ. I express local job finding rates as

a function of estimated labor market tightness and the values of employers in equation (52), Appendix

C.10, together with more details. I then use a shift-share approach in first differences to estimate α, γ

jointly with 2SLS, similarly to the estimation of the migration elasticity 1/ε.

Together with details in Appendix C, the previous arguments prove Proposition 7.

Proposition 7. (Identification)

To a first order when µ,∆, δ, β are not too large, the parameters µ,∆, ρ, ω, ψ, δ, σ, β, λ, ϕ, η, ε, Y, α, γ, as

well as the distribution of firms qualities Fz, the joint distribution of local productivities and amenities

Fp,a, are exactly identified by an overarching GMM estimator. The other parameters can be normalized

except the entry cost.

Third group (7 parameters). I estimate a joint lognormal distribution for local amenities and pro-

ductivities, with respective standard deviations σa, σ` and correlation c`,a. I estimate a Beta distribution

for the distribution of employer quality. Its shape parameters are g1, g2 and its support is [z, z].

Fourth group (1 parameter). A numerical search finally estimates the entry cost ce by targeting the

aggregate unemployment rate.

3.4 Parameter estimates

Table 9 in Appendix C.11 reports the parameter estimates. Overall, they are close to values found in

the literature. The housing shares for workers ω = 0.23 is close to the commonly used value of 0.3 for

the United States. Similarly, the housing share for firms ψ = 0.11 is in the range of estimates reported

in Desmet et al. (2018). The negative drift δ of the worker-level productivity process is close to the

quarterly value of 0.5% implied by the estimates in Engbom (2018), and the volatility σ is somewhat

46Altenatively, amenities could be obtained as residuals from the migration share equation (24). Because the estimation
relies on observed population shares, I choose to match population rather than migration shares. In practice, they are highly
correlated.
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Figure 5: First year job losing rates and housing prices across cities.

(a) First year job losing rate: model vs. data. (b) Housing prices: model vs. data.

Note: Figure 5(a): annual job losing rate in first year of job, model against data. Figure 5(b): housing prices in model
against data. Cities in model identified by their job losing rate. Blue circles proportional to city size.

smaller. The bargaining power β is 0.08, close to the estimate in Hagedorn and Manovskii (2008) and

references therein. The housing supply elasticity η implies a price-to-population elasticity of 0.28, within

the range reported in Saiz (2010) for the United States. The migration elasticity 1/ε is 4.72, within but

towards the high end of the values reported in the literature between 0.5 and 5.47 The matching function

elasticity α is 0.3, within the range reported in Petrongolo and Pissarides (2001). The inverse vacancy

cost elasticity γ implies that the cost function is close to quadratic, in line with existing estimates. The

scarring rate ϕ implies a 4% relative wage loss for workers who spend a year unemployed, consistently

with Jarosch (2021).48

3.5 Over-identification exercises

Job loss in first year. With the estimated model at hand, I start with two exercises that support the

estimates of the productivity process δ and σ. First, Figure 5(a) shows that the model closely fits the full

cross-sectional variation of job losing rates in the first year, despite relying on a single degree of freedom

δ/σ to predict them as per (21). Job loss is more frequent in the first year than on average, indicating a

declining tenure profile.

Second, I compute firm-level labor productivity growth relative to aggregate labor productivity growth

with balance sheet data. I obtain a relative decline of 0.1% quarterly, close to the estimate of δ.49

47The estimate for µ implies an annual migration rate of about 1%. The overall migration rate in my sample is about 3%.
This discrepancy arises because many migrants are employed workers moving with a job at hand. However, in steady-state,
the migration elasticity is the key driver of population movements, not the migration rate.

48Jarosch (2021) also includes negotiation capital losses that account for half of his overall 10% wage loss.
49I focus on large and high labor productivity firms to minimize survival selection bias. These firms are the least likely to

exit in the data and according to theories of firm dynamics with frictional labor markets such as Bilal et al. (2022).
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Housing prices. How well does the estimated housing supply elasticity account for cross-sectional

dispersion in housing prices? Figure 5(b) plots housing prices in the model against the data. Despite

using a single parameter η, the model’s predictions are centered around the 45 degree line in orange with

moderate residual dispersion.

Amenities. Unobserved local amenities allow the model to match the dispersion in city-level population.

A natural check of the non-parametric amenity estimates ac is to correlate them with local characteristics

that should affect the value of living in a particular location. I correlate estimated log amenities on

the log of sun hours per month, as well as a the log density of residential service establishments of

various kinds. Table 10 in Appendix C.12 shows that more sun hours and a higher density of health or

commercial services are all positively associated with higher amenities.50 These results support the view

that estimated amenities capture salient features of residential attractiveness.

Having established the ability of the estimated model to speak to a number of targeted and non-

targeted moments in addition to the validation exercises in Section 2.6, I now turn to the main structural

results of this paper: the breakdown of spatial unemployment gaps into job loss and job finding, and the

welfare effects of place-based policies.

4 Spatial unemployment gaps and place-based policies

This section first shows that the model quantitatively accounts for spatial unemployment differentials.

Next, this section discusses the employment and welfare effects of place-based policies.

4.1 Spatial job loss differentials and unemployment

The estimated model replicates closely the key role of job loss in the data. Figure 6 plots the model

equivalent of Figure 2—the graphical decomposition of spatial unemployment gaps into job losing and job

finding rates—together with the data for comparison. Job losing rates account for most of the variation

in local unemployment rates because employers sort strongly across locations, as per Proposition 2. The

job finding rate is nearly flat across locations because of the opposing forces highlighted in Proposition 1.

As a result, the unemployment rate largely follows the spatial patterns of the job losing rate.

Neither the location decision of employers, nor the spatial variation in job finding rates, are constrained

by the estimation. The spatial variation in job losing rates results from (i) the distribution fz, that is

constrained by the estimation, but also (ii) the equilibrium assignment of employers to locations z(`),

that is left entirely free. The estimation does not limit the spatial variation in job finding rates apart from

the two coefficients that identify α and γ. The job losing and job finding variance shares are therefore

useful moments to assess the model’s ability to speak to spatial unemployment differentials.

Does the model account quantitatively for spatial unemployment gaps? Table 1 reports the dispersion

in local unemployment rates and its breakdown into job losing and job finding rates. The first two

columns of Table 1 reveal that the model accounts for over 75% of the cross-sectional standard deviation

of local unemployment rates, 0.019 against 0.025. The decentralized equilibrium also closely replicates

50For instance, doubling the number of sun hours per month raises the amenity value of a location by 12%. Doubling the
density of health establishments increases amenities by 6.7%.
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Figure 6: Local job losing and finding rates against unemployment-employment ratios in model.

(a) Job losing rate (b) Job finding rate

Note: Figure 6(a) plots the log of the job losing rate against the log of the unemployment-employment ratio, across cities in the DADS
data and in the estimated model. Figure 6(b) plots minus the log of the job finding rate against the log of the unemployment-employment
ratio, across cities in the DADS data and in the estimated model.

the contribution of job losing rates to spatial unemployment differentials. The job losing share is 73% in

the estimated model against 77% in the data.

I evaluate the role of labor market pooling complementarites in the third column of Table 1. It

reports the same decomposition as the second column, but after shutting down the labor market pooling

externality. The labor market pooling externality is key in generating spatial differences in unemployment

rates. The cross-sectional standard deviation of local unemployment rates drops to 0.003 without labor

market pooling externalities, 15% of its baseline value and 12% of its value in the data. Hence, the pooling

externality yields over a five-fold amplification of spatial unemployment gaps.

The labor market pooling externality matters quantitatively because it magnifies the spatial sorting

of employers. It induces excess clustering of the most productive employers with stable jobs in the best

locations. As a result, only employers that are not productive enough, with jobs that are too unstable,

remain in high unemployment locations. Consistently, the job losing rate share drops to 45%.

I confirm the key role of the pooling externality by re-estimating an efficient model without the

externality. In the fourth column of Table 1, I impose directed search instead of random search before

estimating the model.51 Even when re-estimated, the efficient allocation falls short of replicating the

empirical dispersion in local unemployment rates as well as the central role of job loss. The dispersion in

local unemployment rates again drops to 12% of its value in the data, and the job losing rate generates

barely more than half of this variation.

This comparison between the baseline and the re-estimated efficient allocation confirms that the

estimation does not place strong constraints on the dispersion in unemployment, job losing and job

finding rates. These moments therefore provide informative over-identification restrictions to evaluate the

51The directed search and planning allocations coincide under the same parameters as per Proposition 4. In practice,
parameter estimates under the re-estimated efficient allocation are close to estimates in the decentralized equilibrium.
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Table 1: Aggregate and local unemployment rates in the decentralized equilibrium.

Data Baseline No pooling Est. planner

Aggregate unemployment rate 0.097 0.097 0.093 0.097

St. dev. unemployment rate 0.025 0.019 0.003 0.003

Var. log unemp. / emp. 0.072 0.048 0.002 0.001

Job losing rate 77 % 73 % 45 % 51 %

Job finding rate 23 % 27 % 55 % 49 %

Note: All statistics are population-weighted. ‘Data’ column reports moments in the data. ‘Baseline’ column
reports moments in the estimated model. ‘No pooling’ reports moments in the estimated model after shutting
down the labor market pooling externality. ‘Est. planner’ reports moments for a fully re-estimated model
under directed search. Its allocation coincides with the social planner’s allocation.

ability of the model to account for spatial unemployment gaps and discriminate between different sets of

assumptions. Table 1 strongly favors the baseline version of the model that includes the labor market

pooling externality, against the efficient economy that does not feature this amplification force.

Labor market flows, wages, population and vacancies. Can the model also account for the co-

movement between labor market flows, wages, population and vacancies? Table 2 displays the results

from worker-level OLS regressions of job losing and finding rates onto local wages and population. It

compares results in the baseline model to the data.

Wages correlate negatively with job loss both in the data (-0.12) and in the model (-0.19). This

negative correlation reflects the spatial sorting of employers. Employers who offer stable jobs also pay

high wages. Thus, cities with high wages are also those with low rates of job loss. Consistent with the

moderate spatial variation in the job finding rate in Figure 6(b), the job finding rate is not strongly

correlated with wages or population, both in the model and in the data.

Job losing and job finding rates correlate more weakly with local population after controlling for local

wages, both in the model and in the data. This weaker correlation reflects the difference in location

decisions between workers and employers. Recall that Proposition 6 implies that labor market flows and

wages are one-to-one with the local index `(p, a), while population depends on amenities a conditional on

`(p, a) because of the residential choice of workers. Population thus exhibits additional dispersion relative

to wages which drives the coefficient on population towards zero.

Can the model reproduce the co-movement between unemployment and vacancies in the data? Section

2.6 highlighted that this co-movement is ambiguous theoretically and empirically. Consistently with this

ambiguity, Figure 15 in Appendix C.13 reveals that the co-movement between labor market tightness and

unemployment can take any sign depending on parameter values. At baseline estimates, this co-movement

is positive and consistent with the correlation between unemployment and tightness after adjusting for

job-to-job search. With less elastic recruiting costs γ = 3, the co-movement is negative and consistent

with the correlation between unemployment and tightness without the job-to-job adjustment.

4.2 Place-based policies

Having demonstrated that the model accounts for spatial unemployment and job loss gaps, this final sec-

tion presents two policy counterfactuals. Both counterfactuals quantify the local and general equilibrium
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Table 2: OLS regressions of worker-level job loss and job finding probabilities.

Job loss Job finding

Data Model Data Model

Log city wage -0.12∗∗∗ -0.19 0.01 0.06
(0.03) (0.02)

Log city population 0.04 -0.06 0.02 0.00
(0.07) (0.06)

Industry-year & worker fixed effects X X

Obs. 2825413 394678
R2 0.124 0.228

Dependent variables relative to unconditional mean. Independent variables standardized to unit
standard deviation. Data: Standard errors in parenthesis, two-way clustered by city and 3-digit
industry. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. City population density by
km2. Quarterly frequency. 1997-2007. Movers only. Model: population moments. Worker-level
regressions. Wages net of human capital in the model.

welfare gains from place-based policies in the long run by comparing steady-states. The first counter-

factual studies the policy that corrects the labor market pooling externality. The second counterfactual

contrasts this policy with the real-world French Enterprise Zone (EZ) program in France.

I start by examining the quasi-optimal policy that corrects the labor market pooling externality. Under

this policy, the economy is not fully efficient since the Hosios (1990) condition needs not hold. Instead,

the quasi-optimal policy focuses on the location choice of employers. The quasi-optimal policy takes the

form of a corporate tax credit whose generosity rises with the local job losing rate, consistently with

Propositions 5 and 6. The policy is financed with a non-distortionary flat earnings tax.52

I contrast the effects of the quasi-optimal policy with a real-world example of an economy-wide set

of place-based policies. Federal programs such as the Empowerment Zones program in the United States

proposed considerable tax breaks for firms opening jobs in high unemployment areas. In France, a similar

EZ program was rolled out in 1996 and subsequently expanded—the “Zones Franches Urbaines.” The

labor market pooling externality provides a theoretical basis for such policies. By changing incentives to

open jobs across locations, the policies effectively relocate jobs and affect the general equilibrium of the

economy.53

Figure 7 displays the cross-sectional patterns of the equilibrium under the laissez-faire, the quasi-

optimal policy and a budget-equivalent version of the French EZ program. The EZ subsidy is much

smaller than the quasi-optimal one in scale and scope. However, it shares the same qualitative pattern.

The leftward shifts in the job losing rate indicate that both policies relocate more productive employers

towards high-unemployment locations. Under the EZ program few marginal jobs change location, with

minor effects on the job losing rate. By contrast, the quasi-optimal policy heavily relocates productive

jobs towards initially high unemployment locations, resulting in a large drops in the job losing rate.

52To compute welfare gains without taking a stand on distributional issues between owners and workers, I use the equivalent
formulation where profits and rents are rebated to workers with a non-distortionary flat earnings subsidy.

53Ideally, the estimation would account for the policy during the sample period. However, the necessary estimates of local
policy expenditures are difficult to obtain. In practice, the policy is small and has modest local and general equilibrium
effects. Therefore, it is unlikely to affect parameter estimates and counterfactuals substantially.
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Figure 7: Outcomes under the decentralized equilibrium, quasi-optimal policy and French EZ program.

The job finding rate is more sensitive to policy than the job losing rate because of the opposing

forces highlighted in Proposition 1. The EZ program increases the job finding rate because of a volume

effect. Despite only a moderate decline in the job losing rate, the EZ program attracts more jobs to high

unemployment locations. Hence, the unemployment rate declines in treated locations.

The employment response is broadly consistent with difference-in-difference evidence evaluating actual

place-based policies. Mayer et al. (2015) evaluate the French EZ program and find that employment

increases by 23% in treated locations. Although less directly comparable, Busso et al. (2013) find a 12%

employment response for a similar EZ program in the United States. In the model, employment increases

by a more modest 7% in treated locations.54

The quasi-optimal policy also strongly increases the job finding rate in initially high unempoyment

locations. There, the combined reduction in job losing rates and increase in job finding rates result in

large drops in local unemployment rates that can exceed 10 percentage points. Consequently, spatial

unemployment differentials plummet.

Mirroring the falling unemployment rate, average human capital k̄(u(`)) steeply rises across locations

in the laissez-faire. Localized scarring effects imply human capital gaps of over 25% between residents

of the best and worst locations in the laissez-faire. The EZ program alleviates localized scarring effects

due to the reduction in local unemployment rates in treated locations. In line with the drastic reduction

in unemployment under the quasi-optimal policy, human capital accumulation improves dramatically in

initially high unemployment locations.

Figure 8 depicts the welfare gains for residents across all locations. Locations are ranked by their

54The discrepancy may arise for at least two reasons. First, the French EZ program is stylized in the model relative to its
implementation in practice. Second, the model lacks a labor market participation decision.
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Figure 8: Welfare gains from the quasi-optimal policy and the French EZ program.

Note: Expected welfare gains of residents who never receive the moving opportunity. Split into the average gain to a worker conditional
on k = 1, and human capital gain defined as changes in the Ww(`) and k̄(`) components as per equation (73) in Supplemental Material
G.11. Locations ranked by their unemployment rate in the laissez-faire. X-axis reflects population-weighted quantiles. Left panel:
quasi-optimal policy. Right panel: French EZ program.

unemployment rate in the laissez-faire equilibrium, and grouped into population-weighted quantiles to

reflect how many workers experience a given welfare increase. The quasi-optimal policy achieves large

welfare gains that exceed 10% in initially high unemployment locations.

What is the role of localized scarring effects of unemployment? The different colored areas correspond

to an exact welfare decomposition in equation (73), Supplemental Material G.11. The blue area represents

direct gains to the average resident worker, conditional on unit human capital. It is equal to the steady-

state welfare gains of an unemployed worker who never received the moving opportunity and so stayed

in the same location, with k = 1. Figure 8 shows that direct gains steadily rise with pre-policy local

unemployment under both policies.55

Reductions in scarring effects of unemployment are central to welfare gains from place-based policies.

By lowering local unemployment, both policies alleviate localized scarring effects and let workers accumu-

late more human capital. The orange area in Figure 8 reveals that diminishing scarring effects account

for the majority of welfare gains in most locations. Because the quasi-optimal policy relocates jobs away

from the best locations, residents there experience welfare losses. By contrast, the EZ program has more

modest effects, with welfare gains peaking below 5% and concentrated in treated, high unemployment

areas.

To highlight the spatial distribution of these local welfare gains, Figure 9(a) maps the welfare gains

from the quasi-optimal policy across all French commuting zones. Because welfare gains are strongly cor-

related with the local unemployment rate, the southern Mediterranean coast benefits most. In suburban

areas close to Paris, several high unemployment commuting zones also benefit substantially. Local welfare

gains are accompanied by substantial TFP improvements, as more productive employers relocate towards

55The blue area also corresponds to each location’s contribution to the aggregate welfare gains for workers with k = 1.
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Figure 9: Local gains from the quasi-optimal policy

(a) Welfare gains (%)
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Note: Figure 9(a) maps welfare gains from the quasi-optimal policy by commuting zone in mainland France. Figure 9(b) maps TFP
gains from the quasi-optimal policy by commuting zone in mainland France. Corsica and overseas territories omitted for exposition.

areas with more generous tax credits.

I aggregate local welfare gains and compute aggregate welfare gains from the quasi-optimal policy and

the EZ program in Table 3. The quasi-optimal policy achieves just under 1% aggregate welfare gains.

The quasi-optimal policy also reduces spatial unemployment differentials more than five-fold as in Table

1. Despite its relatively small size, the EZ program reduced spatial unemployment differentials by over

10% and raised aggregate welfare by 0.1%. Reductions in scarring effects of unemployment account for

three quarters to nine tens of overall welfare gains.

It is not surprising that the EZ policy delivers smaller gains than the quasi-optimal policy since it con-

sists in a much smaller subsidy scheme. Aggregate expenditures on the EZ policy represent redistributing

0.04% of Gross Domestic Product (GDP). Expenditures under the quasi-optimal policy are over 50 times

larger. If scaling up the redistribution-efficiency ratio of the EZ policy was possible, welfare would rise

by about 5% for every percent of GDP redistributed. The quasi-optimal policy is ten times less efficient,

indicating that decreasing returns rapidly kick in. Indeed, one should expect the planner’s problem to

be concave in the profit subsidy around the quasi-optimal policy. Thus, the largest gains for a marginal

increase in the profit subsidy should arise close to the laissez-faire.

This comparison suggests that smaller place-based policies may be more efficient than larger ones in

the presence of additional frictions. Albeit a full investigation is beyond the scope of this paper, many

economic forces left out of the model may generate dead-weight losses that scale with the policy inter-

vention. Fiscal optimization across establishments within firms, fiscal externalities or political economy

constraints are a few examples. In this case, interventions of the scale of the EZ program are likely to be

more robust than the quasi-optimal policy.
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Table 3: Aggregate gains from place-based-policies

Laissez-faire Quasi-optimal EZ program

Aggregate unemployment rate 0.097 0.093 0.096

St. dev. unemployment rate 0.019 0.003 0.016

Aggregate welfare gains (%) 0.831 0.090

Unemployed 0.150 0.005

Employed 0.039 0.002

Human capital 0.641 0.083

Resdistribution (% of GDP) 2.101 0.040

Note: Unemployed, employed and human capital gains defined as change in the Wu,W e,Wk compo-
nents in equation (75) in Supplemental Material G.11, respectively.

Conclusion

This paper has proposed an alternative view of spatial unemployment differentials. I have shown that

high localized unemployment arises because workers repeatedly lose their job, not because finding a job

is particularly hard. Differences in job losing rates emerge as employers with unstable jobs self-select

into similar locations, while employers with stable jobs locate in others. I have developed a theory in

which labor market pooling complementarities are a central driver of the location choice of heterogeneous

employers. As a result, employers with stable jobs over-value locating close to each other due to labor

market pooling externalities. This view implies that redistributing from low unemployment locations

towards high unemployment locations is welfare improving.

Of course, the idea that pooling externalities result in too much concentration in the best options

available to workers and employers is more general than the particular spatial context put forward in this

paper. For instance, investigating the implications of pooling externalities for the allocation of workers

and employers across occupations and industries could lead to interesting policy insights. Indeed, in the

spatial context alone, pooling externalities quantitatively account for the lion’s share of differences in

unemployment across locations.

Consequently, the view of this paper emphasizes that spatial unemployment differentials are not an

immutable characteristic of the economic landscape. Instead, place-based policies have the potential

to drastically reshape the spatial distribution of unemployment, and ameliorate employment prospects

at the aggregate level. While a long tradition of research has found that agglomeration economies call

for taxes on poor locations, the implications thereof have remained at odds with a wide range of real-

world spatial policies. The view that labor market pooling externalities lie at the heart of the location

decisions of employers helps reconcile theory with the intuition that incentivizing businesses to open in

distressed areas may help rather than harm individuals. Yet, the inherently local nature of many economic

interactions gives rise to many other externalities. Therefore, any policy recommendation should account

for as many sources of agglomeration and congestion as possible. As individuals who grow up and live in

different places seem to face increasingly divergent economic opportunities, place-based policies appear

more relevant than ever.
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Fajgelbaum, Pablo D., Morales, Eduardo, Suárez Serrato, Juan Carlos, and Zidar, Owen (Sept. 2018).

“State Taxes and Spatial Misallocation”. The Review of Economic Studies 86.1, pp. 333–376.

Fujita, Shigeru and Ramey, Garey (2009). “The Cyclicality of Separation and Finding Rates”. Interna-

tional Economic Review 50.2, pp. 415–430.

Galichon, Alfred (2016). Optimal Transport Methods in Economics. Princeton University Press. isbn:

9780691172767.

Gaubert, Cecile (2018). “Firm Sorting and Agglomeration”. American Economic Review 108.11, pp. 3117–

53.

Giannone, Elisa (2017). “Skill-Biased Technical Change and Regional Convergence”. Society for Economic

Dynamics, 2017 Meeting Papers 190.

Glaeser, Edward L. and Gottlieb, Joshua D. (2008). “The Economics of Place-Making Policies”. Brookings

Papers on Economic Activity Spring, pp. 155–254.

Glaeser, Edward L., Kim, Hyunjin, and Luca, Michael (2018). “Nowcasting Gentrification: Using Yelp

Data to Quantify Neighborhood Change”. American Economic Association Papers and Proceedings

108, pp. 77–82.

Grossman, Gene M. and Rossi-Hansberg, Esteban (2012). “Task Trade Between Similar Countries”.

Econometrica 80.2, pp. 593–629.

Hagedorn, Marcus and Manovskii, Iourii (2008). “The Cyclical Behavior of Equilibrium Unemployment

and Vacancies Revisited”. American Economic Review 98.4, pp. 1692–1706.

Hall, Robert E. (1972). “Turnover in the Labor Force”. Brookings Papers on Economic Activity 3.3,

pp. 709–764.

— (2005). “Employment Fluctuations with Equilibrium Wage Stickiness”. American Economic Review

95.1, pp. 50–65.

Hanson, Andrew (2009). “Local employment, poverty, and property value effects of geographically-targeted

tax incentives: An instrumental variables approach”. Regional Science and Urban Economics 39.6,

pp. 721–731.

Hopenhayn, Hugo and Rogerson, Richard (1993). “Job Turnover and Policy Evaluation: A General Equi-

librium Analysis”. Journal of Political Economy 101.5, pp. 915–938.

Hosios, Arthur J. (1990). “On the Efficiency of Matching and Related Models of Search and Unemploy-

ment”. The Review of Economic Studies 57.2, pp. 279–298.

Jarosch, Gregor (2021). “Searching for Job Security and the Consequences of Job Loss”. National Bureau

of Economic Research, Working Paper Series 28481.

44



Kennan, John and Walker, James R. (2011). “The Effect of Expected Income on Individual Migration

Decisions”. Econometrica 79.1, pp. 211–251.

Kline, Patrick and Moretti, Enrico (2013). “Place Based Policies with Unemployment”. American Eco-

nomic Review 103.3, pp. 238–43.

Krugman, Paul (1991). Geography and Trade. MIT Press, Cambridge.

Krusell, Per, Mukoyama, Toshihiko, Rogerson, Richard, and Şahin, Ayşegül (2017). “Gross Worker Flows
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Appendix

A Descriptive evidence

A.1 Transition rates

A.1.1 Time aggregation and three state model

Time aggregation correction. Consider first the case in which each city is isolated and workers never

leave or enter the labor force which size is normalized to 1. Assume constant job losing and finding rates

s, f . Then unemployment and employment in each city evolves according to the ODE system

u̇ = se− fu ; ė = fu− se ; e = 1− u.

This system admits the solution u(t) = u∞ + (u0 − u∞)e−(s+f)tand e(t) = e∞ + (e0 − e∞)e−(s+f)t, where

u∞ = s
s+f and e∞ = f

s+f . Therefore, the transition probabilities in any given time interval [0, t] are

Pt[E → U ] = u(t)
∣∣
u0=0

=
s(1− e−(s+f)t)

s+ f
; Pt[U → E] = e(t)

∣∣
u0=1

=
f(1− e−(s+f)t)

s+ f
.

Hence, the instantaneous quarterly transition rates can be recovered from time-aggregated transition

probabilities from s = T ×P1[E → U ] and f = T ×P1[U → E], where one quarter is the interval [t, t+1),

and the time aggregation correction factor is

T = −
log
(

1− P1[E → U ]− P1[U → E]
)

P1[E → U ] + P1[U → E]
.

Three state model. I now consider a three-state version of the model, still with isolated locations

and the total number of individuals normalized to 1 in each lcation. Denote now by n(t) the number of

individuals out of the labor force, so that u(t) + e(t) + n(t) = 1. There are transitions between all states,

such that

u̇ = se− fu+ rn− du ; ṅ = sne− fnn− rn+ du,

where sn is the separation rate into non-participation, fn the finding rate out of non-participation, r the re-

entry rate (NU) and d the drop-out rate (UN). In steady-state, du−rn = se−fu and du−rn = fnn−sne.
Finally, the unemployment rate uR is uR = u

e+u = u
1−n . Using e = 1−u−n and combining both equations,

uR =
s(fn + r) + rsn

fn(d+ f + s) + r(f + sn + s)
=⇒ uR

1− uR
=
s(fn + r) + rsn
fn(d+ f) + rf

.

Defining p = s(fn+r)+rsn
fn(d+f)+rf −

s
s+f , I obtain

log
uc

1− uc
= log sc − log fc + log pc + ec, (25)
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Table 4: Variance decomposition of local unemployment-employment ratio.

France U.S.

DADS LFS CPS

Direct flows: job losing and finding rates (%) 92 105 96

Job losing rate

% direct flows 78 59 73

% total 72 62 70

% total, time-aggregated 71 55 62

Job finding rate

% direct flows 22 41 27

% total 20 43 26

% total, time-aggregated 21 50 34

Non-participation (%) 10 -4 -4

Residual (%) -2 -1 8

Note: Variance decomposition of log unemployment-employment ratio following equation
(26). Direct flows represent the contributions of job losing and job finding rates.

where ec is a residual that captures migration flows, local dynamics and measurement error. The exact

variance decomposition of the log unemployment-employment ratio writes

Var

[
log

uc
1− uc

]
=

Direct flows︷ ︸︸ ︷
Cov

[
log

uc
1− uc

, log sc

]
+ Cov

[
log

uc
1− uc

,− log fc

]
+ Cov

[
log

uc
1− uc

, log pc

]
︸ ︷︷ ︸

Non-participation

+Cov

[
log

uc
1− uc

, ec

]
︸ ︷︷ ︸

Residual

. (26)

Time aggregation and three state model in the data. Table 4 reports the variance decomposition

of local unemployment on job losing rates, job finding rates, non-participation flows and a structural

residual for non-time-aggregated and time-aggregated flows.

A.1.2 Changes over time

Figure 10 plots the analogue of the decomposition in equation (1) in changes over time. I find that

changes in job losing rates account for 44% of the variation in changes in local unemployment rates. By

contrast, job finding rates account for 56% of that variation. Thus, over 5-year intervals, changes in cities’

unemployment rates are consistent with the conventional business cycle view that job finding rates are

the primary determinant of unemployement rates. Only in the long run do job losing rates matter.
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Figure 10: Job losing and finding rates across cities and over time in France.
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Note: Decomposition of changes in predicted unemployment to employment ratio ∆ log ûc
1−ûc

≡ ∆ log sc − ∆ log fc into

changes in job losing and changes in job finding rates. Cities binned into population-weighted deciles. Changes between
1997-2001 and 2002-2007 averages.

A.2 Composition

Fixed effect models. To estimate the three-way and two-way fixed effect models in (2), I cluster

employers, workers and cities into groups prior to estimation. I start by computing the unconditional

EU probability for every employer, worker and city. Next, I define groups of employers ad population-

weighted quantiles of employers’ unconditional EU probability. Similarly, I define groups of workers and

cities as population-weighted quantiles of their unconditional EU probability. As long as there is positive

sorting between employers, workers and cities, grouping based on the unconditional EU probability is

asymptotically consistent with the true employer, worker and city effect.

Firm-level correlates. Figure 11 plots firm-level observables against an estimated job losing firm fixed

effect.

Industry and skill composition. In principle, differences in the local industry mix and worker skill

mix may account for some or all of the differences in the average worker and employer effects highlighted

in Figure 3. To assess the role of industry and skill heterogeneity across cities, I first reproduce Figure 2

separately by industry. I distinguish between industries with tradable output goods (agriculture, mining

and manufacturing), non-tradable output goods (construction, retail, hospitality and personal services),

and industries with output goods of intermediate tradability (utilities, finance, insurance and real estate,

public, education, health, transportation and other services). I assign workers to their last industry of

employment to construct industry-specific unemployment and job finding rates.

Figure 12 reveals that in both tradable and non-tradable industries, job losing rates co-move strongly
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Figure 11: Firm-level correlates of firm-specific job losing rates in France.
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Note: Graphs exclude firms with no separations to unemployment in the sample. Job losing rate in panel (a) is the uncon-
ditional EU probability at the firm. Profitability in panel (f) defined as accounting profits (“Excedent brut d’exploitation”)
per worker. In panel (i), industries with tradable output are agriculture, mining and manufacturing. Industries with
non-tradable output are construction, retail, hospitality and personal services. For panel (i) only, I exclude industries with
output of intermediate tradability: utilities, finance, insurance and real estate, public, education, health, transportation
and other services.

with local unemployment rates across space for all industries, while job finding rates remain nearly

constant. While tradable industries have lower job losing rates and marginally higher job finding rates

overall, the job losing rate gap between tradables and non-tradables is nearly constant across space.

Yet, if non-tradable industries are more prevalent in high-unemployment cities can industry hetero-

geneity account for a sizeable share of spatial unemployment differentials. In fact, the employment share

of tradable industries drops from 38% to 14% when comparing cities in the lowest to the highest decile

of local unemployment rates.

To assess quantitatively the role of industry and skill heterogeneity, I next estimate three-way fixed

effect econometric models of the following form:

Yi,t = αC(i,t) + βI(i,t) + γS(i) + ei,t, (27)

where C denotes a city, I denotes a 3-digit industry, S denotes a skill group, i denotes a worker identifier,
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Figure 12: Job losing and finding rates by city and industry against unemployment-employment ratios in
France.
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(b) Job finding rate
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Note: Bin-scatterplots the log of the job losing rate and job finding rate against the log of the unemployment-employment ratio, across
commuting zones and industries in France (DADS panel).Tradables (blue circles): agriculture, mining and manufacturing. Non-tradables
(dark green squares): construction, retail, hospitality and personal services. Intermediate tradability (light green diamonds): utilities,
finance, insurance and real estate, public, education, health, transportation and other services. City bins constructed using city-level
unemployment rates, averaged across industries.

and t is a quarter. αC is a city effect, βI an industry effect, and γS a skill effect. ei,t is a conditionally mean

zero residual. Yi,t is an outcome of interest, that is either a job loss indicator, a job finding indicator, or an

unemployment indicator. For unemployed workers, I define industry as their last industry of employment.

I estimate linear probability models with 232 industry fixed effects and 300 skill fixed effects. Then, I

replicate Figure 2 with the estimated city fixed effects α̂c.

Figure 13 reveals that industry and worker composition do not contribute significantly to spatial

unemployment differentials. While controlling for industry and skill heterogeneity does reduce the cross-

sectional variation in local unemployment rates from 2.4 p.p. to 2.1 p.p., Figure 13 shows that the job

losing rate remains the dominant source of spatial unemployment gaps.

Table 5 reports variance decompositions of the unconditional job losing rate across French commuting

zones into employer, worker and city components with different definitions of employers. In all specifi-

cations, employers account for the largest share of variation in local job losing rates. When exploiting

multi-establishment firms to separately identify city effects from firm effects, I find that city effects account

for no more than 22% of the overall variation in local job losing rates.

Table 6 reports linear regressions of changes in individual-level EU probabilities on changes in city-level

EU probabilities upon moving. Columns (1) and (5) show that the individual EU probability of movers

tracks the city average. This conclusion holds when the city average is computed using all individuals or

movers only. Columns (2) and (6) reveal that much of this association vanishes when controlling for the

average EU probability of the worker’s employer: in both cases, the coefficient drops substantially. and
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Figure 13: Local job losing and finding rates against unemployment-employment ratios in France. City
fixed effects net of local industry and worker composition.
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Note: Scatterplots the log of the unconditional (blue circles) and residual (green squares) job losing rate and residual job finding rate
against the log of the residual unemployment-employment ratio, across commuting zones in France (DADS panel). Residual defined as
the estimated city fixed effect from the three-way fixed effect model in (27).

becomes either insignificant or nearly insignificant. This finding is consistent with Figure 3 showing that

local employers account for the majority of the variation in local job losing rates.

The remaining results in Table 6 check whether the conditional random mobility assumption that

underpins identification in equation (2) is likely to be violated. If individuals receive an unobserved shock

that increases their individual job losing rates and at the same time move towards either cities or firms

with systematically higher job losing rates, the conditional random mobility assumption is violated. In

this case, the association between individual and city or firm job losing rates should be stronger when

restricting attention to either moves towards cities with higher or lower job losing rates.

Columns (3-4) and (7-8) of Table 6 indicate that the association between individual and local job

losing rates remains weak and mostly insignificant when restricting attention to either moves towards

cities with higher or lower job losing rates. Columns (9-10) of Table 6 reveal that the association between

individual and firm job losing rates remains statistically indistinguishable from 1, while the association

with local job losing rates remains much weaker, after restricting attention to moves towards firms with

higher or low job losing rates. These results thus support the conditional random mobility assumption.

B Baseline model

B.1 Value functions

In this Appendix I solve the more general model without assuming that wages depend only on productivity

and the location.
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Table 5: Variance decomposition of city job losing rates on worker and employer contributions.

Establishments Firms

Raw ×Occ2 ×Occ4 Raw ×Occ2 ×Occ4

Variance shares (%): 10 groups

Employer fixed effects 59 57 66 44 46 52

Worker fixed effects 41 43 34 35 36 26

City fixed effects 21 18 22

Variance shares (%): 50 groups

Employer fixed effects 62 59 68 47 50 52

Worker fixed effects 38 41 32 33 34 24

City fixed effects 20 16 24

Variance shares (%): 300 groups

Employer fixed effects 62 59 68 47 49 52

Worker fixed effects 38 41 32 32 34 24

City fixed effects 21 17 25

Note: Variance decomposition of average commuting zone job losing rate into worker and employer components
as per equation (3). I vary the definition of an employer: an establishment (SIRET identifier, column 1), an
establishment by 2-digit occupation (column 2), an establishment by 4-digit occupation (column 3), a firm (SIREN
identifier, column 4), a firm by 2-digit occupation (column 5), a firm by 4-digit occupation (column 6). When
using firms, equation (3) is enriched with a city fixed effect. I cluster workers and employers into groups based on
their unconditional mean job losing rate. I use 10, 50 and 300 groups.

Values. When the wage needs not depend on (y, `) but only follows a Markov process, workers’ values

become

ρU = b`r(`)−ω + f(`)E`[V (w∗(y0, `), `)− U ] ; ρV (w, `) = wr(`)−ω + (LwV )(w, `),

where the expectation is taken over the starting productivity y0 in location `. Lw is the integro-differential

infinitesimal generator that encodes the continuation value of employment due to wage changes. It needs

not be explicitly specified at this stage.

Worker surplus. Workers’ surplus from being employed V − U solves

ρ
(
V (w, `)− U

)
= r(`)−ω

(
w − (b+ v(`))`

)
+ Lw

(
V − U

)
(w, `),

where I denote v(`)` = f(`)E[V (w∗(y0, `))− U ] the efficiency value of search in location `.

Employers. The value of a filled job paying wage w with productivity y in location ` solves

ρJ(w, y, `) = y`− w + (LyJ)(y, w, `) + (LwJ)(y, w, `).
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Table 6: Changes in individual EU probability upon moving.

No split Split by city No split Split by city Split by firm

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
All All Down Up All All Down Up Down Up

∆ city EU prob. (all) 1.615∗ -0.070 -0.133 -0.450
(0.659) (0.506) (0.779) (0.760)

∆ city EU prob. (movers) 1.209∗∗∗ 0.414∗ 0.324 0.687∗ 0.521∗ 0.211
(0.248) (0.191) (0.356) (0.336) (0.239) (0.235)

∆ firm EU prob. (movers) 1.029∗∗∗ 1.022∗∗∗ 1.004∗∗∗ 1.024∗∗∗ 1.019∗∗∗ 1.000∗∗∗ 1.007∗∗∗ 0.993∗∗∗

(0.022) (0.027) (0.032) (0.022) (0.027) (0.032) (0.029) (0.040)

Obs. 3209 3209 1721 1877 3209 3209 1721 1877 2057 1781

R2 0.002 0.415 0.452 0.344 0.007 0.416 0.452 0.346 0.373 0.262

Note: Standard errors in parenthesis. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. First four columns: city-level EU probability computed using
all individuals. Last four columns: city-level EU probability computed using only movers. Last four columns: city-level EU probability computed using
only movers. All: linear regression using all movers in sample that move exactly once. Down: restricting to individuals who move to cities or firms with
weakly lower EU probability. Up: restricting to individuals who move to cities or firms with weakly higher EU probability.

B.2 Adjusted surplus, wages and proof of Lemma 1

B.2.1 Adjusted surplus

To characterize wages and values, it is useful to define the adjusted surplus

S(y, `) = J(y, w, `) + r(`)ω ·
(
V (y, w, `)− U

)
,

which is indepedent from wages, and solves the recursion

ρS(y, `, a) = ` ·
(
y − b− v(`)

)
− LyS (28)

for continuing matches. Renegotiation every instant means that employers and workers bargain over flow

surpluses

r(`)−ω(w − (b+ v(`))`) ; y`− w.

Without loss of generality, these flow surpluses can be written as values

W (w) = W0w −W1 ; F (w) = F1 − w.

The following Lemma lets me make progress.

B.2.2 Wage determination

Lemma 3. (Bargaining solution)

Suppose that a worker and an employer set wages either under generalized Nash bargaining, or play an

alternating offer game à la Rubinstein (1982) with static surpluses W (w) = W0w−W1 and F (w) = F1−w,

and worker effective bargaining power β. Define the adjusted surplus S(w) = F (w) + W (w)
W0

. Then

• The adjusted surplus is independent from wages S(w) ≡ S
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• The equilibrium wage w∗ solves

W (w∗)

W0
= βS ; F (w∗) = (1− β)S

Proof. See Supplemental Material E.1.

B.2.3 Solving for the adjusted surplus

Using Lemma 3, the solution to the dynamic bargaining problem immediately follows.

Lemma 4. (Bargaining solution)

Under either generalized Nash bargaining or alternative offers, equilibrium wages w∗(y, `) split the adjusted

surplus into constant shares:

J(y, w∗(y, `), `) = (1− β)S(y, `) ; V (y, w∗(y, `), `)− U = βr(`)−ω · S(y, `).

Because of static renegotiation, wages for continuing matches can then be immediately calculated

w∗(y, `) =
[
(1− β)(b+ v(`)) + βy

]
`. (29)

However, all matches eventually break up. Hence, the adjusted surplus S solves an optimal stopping

problem, and thus a Hamilton-Jacobi-Bellman-Variational-Inequality (HJB-VI):56

0 = max
{(
y −

(
b+ v(`)

))
`+ (LyS)(y, `)− ρS(y, `) , S(y, `)

}
, ∀y ≥ 0. (30)

With equation (30) at hand, Lemma 1 obtains following closely the steps and references in Luttmer (2007),

with the definitions

τ =
2δ

σ2

{√
1 +

2ρσ2

δ2
− 1

}
; y

0
=

1 + τ

τ

ρ

ρ+ δ − σ2/2
.

For completeness, a full proof is given in Supplemental Material E.2.

B.3 Endogenous job loss and unemployment

B.3.1 Proof of equation (12)

Consider a single location ` and omit location subscripts `. I will work in log productivity, x = log y.

Denote gx(t, x) the density in logs, and gy(t, y) the density in levels. These densities are related by

gx(t, x) = gy(t, ex)ex. When unambiguous, I will slightly abuse notation and simply denote g(t, x) the

density in logs, and g(t, y) the density in levels. I denote the steady-state densities by g but without time

arguments.

Consider a unit measure of workers who start employment with some distribution in logs g(0, x). Their

56See Pham (2009) for a formal derivation of the HJB-VI from the sequential formulation.
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distribution then evolves according to the KFE without entry:

gt(t, x) = δgx(t, x) +
σ2

2
gxx(t, x), (31)

where subscripts denote partial derivatives. Let M(t) =
∫∞
x g(t, x)dx denote the measure of employed

workers at time t, with M(0) = 1. Integrating (31) over [x,+∞) and using g(t, x) = 0 for all times t leads

to M ′(t) = 0− σ2

2 gx(t, x). Therefore, the initial job losing rate is −M ′(0)
M(0) = σ2

2 gx(0, x) = σ2

2 gy(0, y)e2x =
σ2

2 y
2gy(0, y). In steady-state, the job losing rate thus follows the same expression evaluated at the steady-

state distribution: s = σ2

2 gx(x) =
σ2y2

2 gy(y).

B.3.2 Proof of Lemma 2

Impose Assumption 1. Consider a single location ` and omit location subscripts `. Thus, in logs x = log y,

the new job distribution function is g0(x) = g0e
−ζ(x−x) where ζ = 1/z. Slightly abusing notation, denote

g(x) the invariant density in logs, and h(x) = g′(x). Then the KFE becomes 0 = δh(x) + σ2

2 h
′(x) +

g0e
−ζ(x−x).

The homogeneous solution is hH(x) = Ae−κ(x−x). Varying the constant, I obtain σ2

2 A
′(x)e−κ(x−x) +

g0e
−ζ(x−x) = 0, and so A(x) = Ã0 − 2g0

σ2

∫ x−x
0 e(κ−ζ)tdt = A0 − 2g0

σ2(κ−ζ)e
(κ−ζ)(x−x). Therefore, g′(x) =

h(x) = A0e
−κ(x−x) − 2g0

σ2(κ−ζ)e
−ζ(x−x). Given the integrability condition for g, the integration constants

must cancel out, and g(x) = Be−κ(x−x) + 2g0

σ2ζ(κ−ζ)e
−ζ(x−x). Finally, g(x) = 0 pins down B, so that

g(x) = g1

[
e−ζ(x−x) − e−κ(x−x)

]
, with g1 = 2g0

σ2ζ(κ−ζ) .

In equilibrium, the measure of entrants is g0/ζ = σ2

2 g
′(x) and simply scales the overall measure of

employed workers. To define a probability density function, set g0—and thus g1—so that g integrates

to 1. I obtain 1 = g1 · κ−ζζκ . Therefore, g(x) = ζκ
κ−ζ

[
e−ζ(x−x) − e−κ(x−x)

]
= κ

κz−1

[
e−(x−x)/z − e−κ(x−x)

]
.

Reverting back to levels y = ex, I obtain gy(y) = gx(log y)/y, and so g(y) = κ
κz−1

1
y

[
(y/y)−1/z − (y/y)−κ

]
.

B.3.3 Proof of Proposition 1

Job losing rate. From Lemma 2 and equation (12), the job losing rate is sζκ = δζ = δ/z.

Job finding rate. To express job finding, it suffices to use the definition of workers’ value of search.

Under Assumption 1, they follow equation (34). The realized finding rate is thus

fR(`) = f(`)

(
B

b+ v(`)

)1/z(`)

=
ρv(`)

β(b+ v(`))S̄(z(`))
≡ ΦR(v(`), 1/z(`)).

Substituting in the definition of reservation wages delivers the expression for fR in Proposition 1, with

w1 = b
(

1− β + βy
0
/ρ).

Unemployment rate. The expression for the unemployment rate then follows from the two-state model

as in Section 1.1.
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B.4 Sorting

B.4.1 Proof of equations (13) and (14)

Given the bargaining solution and the adjusted surplus, the value of employer z in location ` satisfies

ρJ(z, `) = (1− β)q(`)`(b+ v(`))S̄(z, y(`)) , S̄(z, y) ≡
∫
S
(
y0

y

)
G0(dy0|z). (32)

Under Assumption 1, the integral can be explicitly computed and equation (32) becomes

ρJ(z, `) = (1− β)q(`)`(b+ v(`))1− 1
z S̄0(z) ; S̄0(z) ≡ B

1
z S̄(z) ; S̄(z) =

z

1− z
τz

τz + 1
; B ≡ ρY/y

0
.

Expressing b+ v(`) = w(`)
1−β+βy

0
/ρ , I obtain

ρJ(z, `) =
1− β

1− β + βy
0
/ρ
q(`)`w(`)1− 1

z (1− β + βy
0
/ρ)1/zS̄0(z). (33)

Define

S̄(z) = S̄0(z)(1− β + βy
0
/ρ)1/z = (Y/w0)

1
z

z

1− z
τz

τz + 1
.

Finally, substitute the definition of S̄(z) into (33) and raise to a power z
1−z to deliver (14).

B.4.2 Workers’ value of employment

Before turning to the proof of Propostion 2, it is useful to derive an equilibrium expression for the value

of future employment opportunities to unemployed workers v(`). In what follows, I denote S̄(ζ) = S̄(1/ζ)

where ζ = 1/z.

Using Lemma 1 together with the surplus-sharing rule (8), I obtain

v(`)` = ρ−1βf(`)`
(
b+ v(`)

)( B

b+ v(`)

)ζ(`)
S̄(ζ(`))

= ρ−1βm
1
α `q(`)−

1−α
α
(
b+ v(`)

)( B

b+ v(`)

)ζ(`)
S̄(ζ(`)). (34)

Therefore,

q(`)
1−α
α = ρ−1βm

1
α v(`)−1

(
b+ v(`)

)1−ζ(`)
Bζ(`)S̄(ζ(`)). (35)

B.4.3 Separation threshold

Equation (34) implies b+ v(`) = b
1−ρ−1βfR(`)S(ζ(`))

. Using Lemma 1, y(`) = 1+τ
τ

1
ρ+δ−σ2/2

b
1−ρ−1βfR(`)S(ζ(`))

,

which is decreasing in ρ and increasing in fR(`) since τ is increasing in ρ. Cross-derivatives capture

the discounting effect. The cross-derivative in (ρ, z(`) = 1/ζ(`)) is positive, and the cross-derivative in

(fR(`), z(`)) is negative.
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B.4.4 Proof of Propostion 2

The proof of Proposition 2 is structured in four steps. First, re-write the location choice problem (14) into a

simpler, equivalent form. Second, show that this assignment problem admits a support that is an interval.

Third, show that there is positive assortative matching conditional on workers’ values. Fourth, show that

there is positive assortative matching when workers’ values are determined in general equilibrium.

Step 1: equivalent location choice problem. To make notation lighter, denote ζ = 1/z. Using

again the reservation wage equation b+ v(`) = w(`)
1−β+βy

0
/ρ to replace reservation wages by b+ v in (14), I

obtain that new jobs ζ solve the equivalent assignment problem:

`∗(ζ) = argmax
`

[ζ − 1] log
1

b+ v(`)
+ log

(
`q(`)

)
. (36)

This is a non-standard assignment problem, where labor costs v(`) enter both in the return to a location

and as part of the endogenous price that adjusts to mediate the matching. Using (35) to substitute for

q(`), I obtain

`∗(ζ) = argmax
`

(ζ − 1) log
1

b+ v(`)
+ log `+

α

1− α

{
log

b+ v(`)

v(`)
+ ζ∗(`) log

B

b+ v(`)
+ log S̄(ζ∗(`))

}
.(37)

Since the complementarity arises between ζ and the endogenous value of search v, it is useful to consider

the inverse function `(v) rather than v(`), and view the problem as

v∗(ζ) = argmax
v

(ζ − 1) log
1

b+ v
+ log `(v) +

α

1− α

{
log

b+ v

v
+ ζ∗(v) log

B

b+ v
+ log S̄(ζ∗(v)

}
︸ ︷︷ ︸

≡P (v), endogenous “price” sustaining the assignment

. (38)

Step 2: interval property. To use first-order conditions (FOC) to characterize the assignment in

problem (38), I first show that the equilibrium results in a single interval of v’s.

Now suppose for a contradiction that the function v(`) is discontinuous, and that there is a jump at

`0. Denote v1 = v(`−0 ) 6= v2 = v(`+0 ) the lim-sup before the jump and the lim-inf after the jump. The

objective function in (36) is continuous and decreasing in v(`). Thus, the jump in v(`) at `0 results in a

jump in the objective function for a positive measure of employers ζ.57 Thus, almost no employer would

find it optimal to locate on the side of `0 that has the lowest v. Thus, locations to side of `0 that deliver

the lowest v do not have any employers. But now recall that in the trembling-hand refinement, due to

Inada conditions of the matching function, these locations have some (vanishing fraction) of workers.

Thus, locating there for a single deviating employer would have infinite returns. This argument delivers

the required contraction, and v(`) must be a continuous function.

Step 3: sorting conditional on workers’ values. Having shown that v is a continuous function, I can

consider the location choice problem (38). I use standard results on monotone comparative statics—see

e.g. Galichon (2016)—for problem (38), in which I temporarily consider the unknown function v 7→ P (v) as

the equilibrium “price” that sustains the assignment. The supermodularity between ζ and log 1
b+v implies

57Although q(`) could also jump at `0 and ensure continuity of the objective function for a particular ζ0, the term
ζ log 1

b+v(`)
ensures that the objective jumps for almost all ζ’s.
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that the equilibrium features a one-to-one assignment function between ζ and v. From the second-order

condition, the assignment function that maps log 1
b+v to ζ is increasing, and so the assignment function

ζ(v) is decreasing: ζ ′(v) < 0.

Step 4: sorting in general equilibrium. In this last step, I characterize under which conditions the

function ` 7→ v(`) is increasing in equilibrium. Given the property ζ ′(v) < 0, increasing v is equivalent to

ζ ′(`) < 0. The FOC in problem (38) leads to

(1− α)
v`′(v)

`(v)
= α+

v

b+ v
(ζ(v)− 1) + αv

(
S̄ ′(ζ(v))

S̄(ζ(v))
+ log

B

b+ v

)
︸ ︷︷ ︸

<0

· (−ζ ′(v))︸ ︷︷ ︸
>0

. (39)

When α = 0, the bracket on the left-hand-side is always positive. In this case, `′(v) > 0, which implies

z′(`) > 0: there is positive assortative matching (PAM). Therefore, there exists a region of the parameter

space where α is small and positive assortative matching obtains.58 As a result, standard results—e.g.

Galichon (2016)—apply and there exists a unique assignment, for which z and w are increasing.

Substituting v(`) into (39), I obtain[
α+

v

b+ v(`)
(ζ(v)− 1)

]
v′(`) = (1− α)

v(`)

`
− αv

(
S̄ ′(ζ(v(`)))

S̄(ζ(v(`)))
+ log

B

b+ v(`)

)
︸ ︷︷ ︸

<0

·(−ζ ′(`))

Thus, if ζ ′(`) < 0, then v′(`) > 0. This observation implies that there exists a unique assignment with

increasing z and w among all assignments with increasing z, regardless of the value of α.

B.5 Proof of Proposition 3

The proof of Proposition 3 is structured in four steps. First, derive the system of ODEs that determine

the equilibrium. Second, show existence of solutions to this system conditional on general equilibrium

aggregates. Third, show existence of general equilibrium aggregates. Fourth, show uniqueness.

Step 1: ODE system. Impose Assumption 1 and consider dynamically stable steady-states. Then,

PAM obtains. Denote again ζ = 1/z. Because of PAM, labor market clearing in location ` implies

θ(`) = −
Mefζ(ζ(`))ζ ′(`)

u(`)L(`)f`(`)
=⇒Mefζ(ζ(`))ζ ′(`) = −L(`)u(`)θ(`)f`(`).

Using the expression of the finding rate in Proposition 1, re-express labor market tightness as a function

of v, ζ:

θ(`) =

 ρ

βm

v(`)(
b+ v(`)

) (
B

b+v(`)

)ζ(`)
S̄(ζ(`))


1

1−α

≡ Θ
(
v(`), ζ(`)

)
.

58Formally, this statement anticipates that the general equilibrium conditions involve only continuously differentiable fixed
point functionals.
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Define also notation for the local unemployment rate u(v(`), ζ(`)) = δζ(`)

δζ(`)+ΦR

(
v(`),ζ(`)

) . Land market

clearing writes in each location

r(`) = ωL(`)`
[
bu(v(`), ζ(`)) +

(
1− u(v(`), ζ(`))

)
(b+ v(`))

(
(1− β) + βE(ζ(`)

)]
,

where E(ζ) = y
0
/ρ κζ

(κ−1)(ζ−1) is expected productivity under the invariant distribution from Lemma 2.

Substituting into workers’ free mobility condition ρU = `(b+v(`))
r(`)ω , one can express population as

L(`) = U−
1
ω L̄(`, v(`), ζ(`)), (40)

with

L̄(`, v(`), ζ(`)) =
1

ωρ
1
ω

`
1
ω
−1(b+ v(`))

1
ω

bu(v(`), ζ(`)) + (1− u(v(`), ζ(`)))(b+ v(`))
(
(1− β) + βE(ζ(`)

) .
Substitute back into labor market clearing:

Kζ ′(`) = −
f`(`)L̃(`, v(`), ζ(`))Θ

(
v(`), ζ(`)

)
fζ(ζ(`))

, (41)

where K = U
1
ωMe is a combined general equilibrium constant. (41) defines a function Z such that

ζ ′(`) = Z(`, v(`), ζ(`)). In addition,

L̃(`, v(`), ζ(`)) = L̄(`, v(`), ζ(`))u(v(`), ζ(`)) =
1

ωρ
1
ω

`
1
ω
−1(b+ v(`))

1
ω

b+ ρv(`)
δβζ(`)S̄(ζ(`))

(
(1− β) + βE(ζ(`)

) .
Substituting into the FOC for v:

v′(`)

v(`)

[
α+

v(`)

b+ v(`)
(ζ(`)− 1)

]
=

1− α
`
− 1

K
× α

(
S̄ ′(ζ(`))

S̄(ζ(`))
+ log

B

b+ v(`)

)
L̃(`, v(`), ζ(`))Θ

(
v(`), ζ(`)

)
fζ(ζ(`))

.

(42)

(42) defines a function V such that v′(`) = V (`, v(`), ζ(`)). Given K, equations (41)-(42) define a coupled

system of ODEs, with two boundary conditions: ζ(`) = ζ and ζ(`) = ζ.

Inspection of (41)-(42) indicate that the system satisfies standard regularity conditions for a unique

solution to obtain if it has two initial conditions. The present system, however, has one initial and one

terminal condition.

Step 2: Existence of a solution to the ODE system given K. Denote v = v(`). Given K,

inspection of (41)-(42) reveals that the system is Lipschitz continuous. Given v, ζ and K, there thus

exists a unique solution to (41)-(42). The idea is now to study how changes in v affect ζ(`) in the solution

to that system. Lipschitz continuity ensures that ζ(`) is a continuous function of v. Further inspection

of (41)-(42) reveals that as v → 0, so do Z, V . Similarly, as v → +∞, so do Z, V . Therefore, the same

conclusion holds when v → 0 or v → +∞. Hence, there exists at least one v(K) such that ζ(`) = ζ.
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Step 3: Existence of K. The equilibrium has a block-recursive structure. Free-entry alone is enough

to determine K without using population adding up. Given K and thus the solution (b, ζ), population

adding-up immediately determines U as per (40). Thus, it suffices to show that free-entry implies existence

of K. Free-entry can be re-written

K · ce = J0

∫ [
Bζ(`)(b+ v(`))1−ζ(`)v(`)−αS̄(ζ(`))

] 1
1−α · ` · L̄(`)u(`)θ(`)d` = J ′0

∫
v(`)`L̃(`, v(`), ζ(`))d`.

As K → 0, (41) together with the boundary conditions on ζ and an application of Rolle’s theorem to

ζ ′(`) implies v(K)
1

1−α ∼ K → 0. As K → +∞, a similar argument implies v(K)
1
ω
−1+ζ0 ∼ K → +∞,

where ζ0 ∈ [ζ, ζ]. Thus, the right-hand-side integral of free-entry is of order K1−α as K → 0, and is of

order K
1

ζ0+1−ω as K → +∞. Since ζ > 1 by assumption, 1
ζ0+1−ω < 1. Therefore, there exists at least one

solution K to the free-entry condition.

Step 4: Uniqueness. Now suppose that the supports of F`, Fz are small enough. This assumption

makes possible using a first-order approximation to the ODE system (41)-(42). In that case, to a first

order,

Kζ ′(`) ≈ −
L̃(`, v, ζ)Θ

(
v, ζ
)

fζ(ζ)
= −L0

v
1

1−α

1 + L1v
(b+ v)

1
ω

+ ζ−1
1−α , (43)

where L0, L1 > 0 are transformations of parameters. Integrating (43),

K = L′0
v

1
1−α

1 + L1v
(b+ v)

1
ω

+ ζ−1
1−α , (44)

where L′0 = L0
`−`
ζ−ζ only depends on parameters. Similarly, free entry can be approximated to a first order

by

K = J ′′0
v

v + 1/L1
(b+ v)

1
ω , (45)

where J ′′0 , J1 depend only on parameters. Substituting (45) into (44), one obtains

1 = L′′0v
α

1−α (b+ v)
ζ−1
1−α , (46)

where L′′0 depends only on parameters. The right-hand-side of (46) is strictly increasing in v, and so (46)

uniquely pins down v. Then (45) uniquely pins down K. Then
∫
L(`)F`(d`) uniquely pins down U .

B.6 Proof of Corollary 1

This limiting economy preserve a wide support for Fz but considers the limit of a small support for F`.

In that case, it is more useful to index locations by their value of search v rather than productivity `.

Shrinking the support of F` implies `′(v) = 0. Thus, the FOC (39) implies

α+
v

b+ v
(ζ(v)− 1) + αv

(
S̄ ′(ζ(v))

S̄(ζ(v))
+ log

B

b+ v

)
(−ζ ′(v)) = 0 (47)
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which defines a non-degenerate assignment ζ(v) in the limit. Given the boundary conditions and ω > 0, it

must be that there is an interval of v’s in the limit. The assignment ζ(v) implies non-vanishing dispersion

in job losing and unemployment rates. If instead ω = 0, the free-mobility condition (10) would equalize

v across locations.

B.7 Model validation

B.7.1 Proof of Corollary 2

Claim 1. In any small time interval dt, the probability that a match at productivity yt = ext in

location ` separates is P[xt+dt < x(`)|xt] = P[dxt < x(`)− xt] = P
[
dWt√
dt
< x(`)−xt+δdt

σ
√
dt

]
= Φ

(
x(`)−xt+δdt

σ
√
dt

)
,

where Φ denotes the standard normal cumulative distribution function. This expression is decreasing in

xt = log yt.

Claim 2. Directly follows from the assumption dxt = −δt+ σdWt.

Claim 3. Using Lemma 2, average log labor productivity in location ` is E`[x] =
∫∞
x(`) xg(x, `)dx =

x(`) + z(`) + 1/κ which is increasing in ` and thus in z(`) after re-indexing.

Claim 4. Omit location indices. Using Lemma 2, the c.d.f. of log labor productivity is G(x) =∫ x
x g(t)dt = 1 + κ

κz−1

[
κ−1e−κ(x−x) − ze−(x−x)/z

]
.
[
κ−1e−κ(x−x) − ze−(x−x)/z

]
< 0 since G(x) < 1. From

Proposition 2, it suffices to show that ∂G(x)
∂x , ∂G(x)

∂z < 0 to obtain the FOSD result. Now, ∂G(x)
∂x =

κ(x−x)
κz−1

[
e−(x−x)/z − e−κ(x−x)

]
= −(x− x)g(x) < 0. In addition,

∂G(x)
∂z = − κ

(κz−1)2

[
e−κ(x−x) − e−(x−x)/z + (κz − 1)x−xz e−(x−x)/z

]
≡ − κ

(κz−1)2H(u) with ζ = 1/z, u = x−x
and H(u) = e−κu + e−ζu

(
(κ − ζ)u − 1

)
. Thus, it suffices to show that H(u) > 0 for all u ≥ 0. But

H(u) = e−κu
[
1 + eX(X − 1)

]
≥ 0 because e−X ≥ 1−X for all X ∈ R, with X = (κ− ζ)(x− x).

Claim 5. Using the results from the proof of Claim 3, the c.d.f. of log labor productivity satisfies

1−G(x) = κ
κz−1

[
κ−1e−κ(x−x) − ze−(x−x)/z

]
. When κz < 1 and x→∞, 1−G(x) ≈ κz

1−κz e
−(x−x)/z which

defines a Pareto distribution with tail index 1/z.

Claim 6. Using Claim 4, the ratio between tail indices in locations ` and `′ are z(`′)/z(`) = s(`)/s(`′).

B.7.2 Empirical results

Figure 14 zooms into the right tail of the productivity distribution by showing the log tail probability as

a function of log labor productivity. In both groups of locations, the log tail probability is approximately

linear, consistent with the third implication of a Pareto tail. The fourth implication of the model imposes

a strong link between the local job losing rate and the shape of the right tail of the labor productivity

distribution. I estimate the ratio between the tail indices in each group of locations to be 1.79. It is close

to the ratio of group averages of job losing rates, which is 1.77. Together, these results support the Pareto

assumption.

Table 7 reports the results from linear regressions of labor productivity for incumbent and entrant

establishments on local job losing rates, as well as of annual labor productivity growth on local job losing

rates.
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Figure 14: Tail labor productivity distribution across French commuting zones.

Slope ratio        = 1.79
Job losing ratio = 1.77
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Note: Figure 14 plots the log inverse cumulative distribution function for bottom
and top quartiles of commuting zones, ranked by job losing rates

C Estimation

C.1 Time-dependent KFE

The first step for the estimation is to compute an explicit solution to the time-dependent KFE in logs:

gt = L∗xg − (∆ + µ)g where t denotes tenure at a job, and subscripts denote partial derivatives. Define

g(t, y) = e−(∆+µ)th(t, y). Then gt = e−(∆+µ)t(ht− (∆ + µ)h) so that ht = L∗xh. The solution to this PDE

is known. In logs, x = log y, define

Γ(t, x) =
1

σ
√

2πt
e−

(x+δt)2

2σ2t ; G(t, x, y) = Γ(t, x− y)− e
2δ
σ2 (y−x) · Γ(t, x+ y − 2x).

Then it is straightforward to check that h(t, x) =
∫∞
x G(t, x, y)h0(y)dy is the solution with initial distri-

bution h0. See Luttmer (2007) and references therein for a similar result. The details of the derivation

are available upon request. Then, in logs,

g(t, x) = e−(∆+µ)t

∫ ∞
x

G(t, x, y)g0(y)dy

=
ζ

2
e
−
(
D+δζ−σ

2ζ2

2

)
t−ζx

(
1 + Erf

[
x+ t(δ − ζσ2)√

2tσ

]
− e2

(
ζ− 2δ

σ2

)
x
Erfc

[
x− t(δ − ζσ2)√

2tσ

])
(48)

is the time-dependent distribution of log productivity across employed workers in a location with log

threshold x given a starting distribution g0. The second equality imposes g0(x0) = ζe−ζ(x0−x). D = ∆+µ,

and Erf denotes the error function, a transformation of the Gaussian cumulative function.
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Table 7: Plant-level regressions: growth rate of log labor productivity.

(1) (2)

Separation rate 0.001 -0.000
(0.006) (0.006)

Controls

Year X X

2-digit industry X X

Skill mix X

Obs. 31373 31373
R2 0.012 0.013
W.-R2 0.000 0.001

Note: Standard errors in parenthesis, clustered by
city and 2-digit industry. + p < 0.10, ∗ p <
0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Annual frequency,
1997-2006. Entrant defined as less than two year old.
Employment-unweighted regressions.

C.2 Tenure profile of job loss

Now fix a location ` and omit ` indices for simplicity. Normalize x ≡ 0 without loss of generality. Recall

that the flow of workers into local unemployment is Endog. Sep.(t) = σ2

2
∂g
∂x(t, x), which can be calculated

at all times using the explicit solution (48). It can be shown that

Endog. Sep.(t) = e−(µ+∆)t

[
(s/δ̂)√

t
ϕ
(
δ̂
√
t
)

+
(s/δ̂)2

2
e

(s/δ̂)2t
2

{
estΦ

(
−(δ̂ + s/δ̂)

√
t
)
− e−stΦ

(
(δ̂ − s/δ̂)

√
t
)}]

,

where s = δζ is the local average job losing rate into local unemployment, and δ̂ = δ/σ. To get the

time-aggregated job losing rate in the first year, denoted s1(s, δ̂,D), integrate between 0 and 1 against g.

I obtain

s1(s, δ̂,D) =
(s/δ̂)

4

{
e−(D+s−(s/δ̂)2/2)

D + s− (s/δ̂)2/2
(s/δ̂) + 4

Erf

[√
2D+δ̂2√

2

]
√

2D + δ̂2

+
s/δ̂

D + s− (s/δ̂)2/2

(
− 1− δ̂ − s/δ̂√

2D + δ̂2
Erf

[√
2D + δ̂2

√
2

]
+ e−(D+s−(s/δ̂)2/2)Erf

[
δ̂ − (s/δ̂)√

2

])

+
(s/δ̂)

D − s− (s/δ̂)2/2

(
− 1 +

δ̂ + s/δ̂√
2D + δ̂2

Erf

[√
2D + δ̂2

√
2

]
+ e−D+s+(s/δ̂)2/2Erfc

[
δ̂ + (s/δ̂)√

2

])
.

In the limit of a small D, it can be checked that s1 is a decreasing function of δ̂.

C.3 Tenure profile of wages

In the model, the wage of individual i in employment spell p, location c, at calendar time τ and tenure

t, is given by wipcτt = w0c × (A + Bexipct)kipcτt, with A = 1 − β and B = β
y

0
ρ̂ , and w0c is a location

shifter. kipcτt is the worker’s human capital and is correlated with tenure. Calendar time and tenure are
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collinear: τip0 + tip = τ where τip0 is the calendar time at which individual i started employment spell p.

Therefore, kipcτt = kτip0e
λ(τ−τip0). Mean level wages in the economy grow at rate λ, and so W̄τ = W̄0e

λτ .

In particular, evaluating at the starting time of the spell, W̄τip0 = W̄0e
λτip0 . Therefore, taking wages

relative to aggregate wages at the starting time of the spell.

ŵipcτt ≡
wipcτt
W̄τ

= w̃0c × (A+Bexipct)× ετip0 ; w̃0c =
w0c

W̄0
; ετip0 = kτip0e

−λτip0 .

ετip0 plays the role of a individual-spell fixed effect. Take rescaled wage growth relative to initial rescaled

wages at the spell: ωipcτt ≡ ŵipcτt
ŵipc,τip0,0

= A+Bexipct

A+Bex0 . Recall that xipct and x0 are correlated by definition.

Inspection of (48) reveals that y = x/δ has a distribution that is independent from δ at all times—

including time 0—conditional on s, d̂. Anticipating a small estimate of δ, I obtain ωipcτt =
ŵipcτt

ŵipc,τip0,0
=

A+Beδyt

A+Beδy0
≈δ→0 1 + δB

A+B (yt − y0). To a first order, when δ is small relative to ρ, it can be shown that
B

A+B ≈
β

(1−β)ρ̂+β . Therefore, ωipcτt ≈ 1 + δβ
(1−β)ρ̂+β (yt − y0). Then compute

E[ωipcτt|t, c] = 1 +
δ

(1− β)ρ̂+ β
R(t) (49)

where R(t) =
∫
h0(y0)dy0

∫
Gy(t,y,y0)(y−y0)dy∫

h0(y0)dy0

∫
Gy(t,y,y0)dy

. Gy is the Green’s function associated with (48) and the change

of variables y = x/δ. It is given by Gy(t, y, y0)dy = e−Dt
(
γy(t, y − y0) − e2δ̂2y0γy(t, y + y0)

)
with

γy(t, z) =
δ̂ exp

(
− δ̂

2

2t
(z+t)2

)
√

2πt
. Mean rescaled wages in equation (49) are easily computed in the data, and

can also be computed in the model at this stage of the estimation.

C.4 Labor share

From the bargaining solution, the labor share in location ` is

Labor Share(`) =
(1− β)(b+ v(`) + βy

0
/ρH(`)

E(`)
, (50)

where H(`) = E`[y/y|y ≥ y] is expected labor productivity in location ` under the invariant distribution.

Using the solution to the KFE, one obtains

H(`) =
κζ(`)

(κ− 1)(ζ(`)− 1)
=

κ

(κ− 1)(1− z(`))
≡ H(z(`)).

C.5 Learning parameters

Log real wages are proportional to KtR
−ω
t , where t is caldendar time, Kt the average knowledge of the

economy and Rt average house prices. In the data, economy-wide log real wages grow by 0.0015 each

quarter. In the model, KtR
−ω
t ∝ K1−ω−ψ

t up to a constant. Thus, λ = 0.0015
1−ω−ψ = 0.0023.

Then, notice that all workers who become unemployed in a given location have the same wage when

they are laid off: the reservation wage. While they are unemployed, their human capital grows at rate

λ − ϕ. When they find a new job, they draw a productivity from the local new job distribution, which

is independent from their history. Therefore, equation (22) obtains. In empirical specifications, I follow
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Table 8: Unemployment scar estimation. Dependent variable: post-unemployment spell log wage.

Unemployed only DiD

(1) (2) (3) (4) (5) (6)

Job loss × Duration -0.02∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01 -0.01∗∗

(0.00) (0.00) (0.00) (0.00) (0.01) (0.00)

Job loss -0.10∗∗

(0.04)

Duration 0.00
(0.00)

Pre log wage 0.55∗∗∗ 0.44∗∗∗ 0.41∗∗∗ -0.18∗ -0.01
(0.02) (0.03) (0.03) (0.07) (0.05)

Skill 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)

Fixed Effects

Year X X X X X X

2-digit Industry X X X

City X X X

Worker X X

Obs. 35021 35021 35021 35020 6100 76700
R2 0.027 0.287 0.331 0.353 0.802 0.775
W.-R2 0.011 0.276 0.320 0.267 0.022 0.002

Note: Standard errors in parenthesis, two-way clustered by city and 2-digit industry. + p <
0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

the literature and restrict the sample to workers that held a job for at least two years before becoming

unemployed. This restriction ensures that the estimates are not driven by temporary jobs.

The model abstracts from additional mechanisms that could create a correlation between new pro-

ductivity draws an workers’ past unemployment or employment history, as in Jarosch (2021). Thus, in

practice, equation equation (22) may deliver a biased estimate of the depreciation rate of human cap-

ital. To address such concerns, I run version of equation (22) with additional controls that account

flexibly for workers’ past employment history. I also control for worker-level unobserved heterogeneity.

For completeness, I also propose a specification where I use employed workers as a control group in a

difference-in-difference specification—although this control group introduces an additional endogeneity

problem. Results for the estimate of λ − ϕ are reported in the first row of Table 8. The point estimate

remains stable across specifications.
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C.6 Local wages

Wages in location ` are given by

w(`) = W0p ·
(

∆

∆ + ϕu(`)

)
r(`)−ψy(`)

[
(1− β)

ρ

y
0

+ βH(`)

]
, (51)

where W0 is a general equilibrium constant.

C.7 Housing elasticity

Using (64) together with the solution for average wages in a location W (`), housing prices become

r(`)1+η =
w(`)

1− β + βy
0
/ρ̂E(s(`))

· L(`, a)G(s(`)/δ, v(`)).

The right-hand-side defines r0, and involves parameters that have been estimated or data.

C.8 Migration elasticity

To circumvent endogeneity in the OLS regression version of (24), I use changes in predicted local employ-

ment as an instrument. I break down the sample in two subperiods, and, in this section only, I use the

notation ∆ to refer to changes between these two periods. Specifically, I use predicted changes in local

employment ∆Ec from Supplemental Material D.2. To understand this instrument within the model,

assume that there is a set J = {1, ..., J} of industries. Employers in each industry draw from the same

productivity distribution Fz. Locations c differ in a set of industry-specific productivities {pjc}j . Consis-

tent with larger cross-industry flows than cross-location worker flows, suppose that there is a single labor

market for all industries within a location. Suppose further that the cross-industry variance in indus-

try productivity Varc(pjc) is much smaller than the cross-location variance in city productivity Varj(pjc).

This assumption implies that the industrial mix is not strongly predictive of the local unemployment rate,

consistent with the data. Under this assumption, the single-industry model is also a close approximation

to the multi-industry model.

Now consider a set of industry-wide shocks that change pjc to p′jc = pjcp̂j . Vacancy creation reacts

to changes p̂j , so that national employment in industry j is positively correlated with p̂j . Similarly,

employment shares Ejc,0 in the first subperiod are correlated with pjc. Suppose that (1) p̂j are uncorrelated

with pjc, (2) p̂j are i.i.d. across industries. Then p̂j are uncorrelated with changes in amenities ∆ac in

the population-weighted distribution of cities and industries, even if Ec[pjc] are correlated with amenities.

With a large number of industries and locations, the shift share ∆Ec is thus correlated with the average

change in local productivity Ec[∆p′jc]. In general equilibrium, employers relocate in each industry, and so

∆Ec is also correlated with Ec[∆ζjc]. If anything, this correlation makes the instrument stronger. The

crucial exclusion restriction is that ∆Ec is uncorrelated with changes in amenities ∆ac. Therefore, it

constitutes a valid instrument in this augmented model with small industry heterogeneity.
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C.9 Productivity distribution

To estimate Fz, I first recover firm quality in each location using (23). It is easier to work with the

reciprocal of firm quality z, denoted ζ = 1/z. Consider locations with profitability in (`− d`, `]. Because

the job losing rate is strictly decreasing in `, they are exactly those with a job loss rate in [s(`), s(`)+ds(`)].

Due to the model’s sorting implications, the measure of open jobs in those locations is proportional to

fζ(ζ(`))dζ(`) = δ−1fζ(ζ(`))ds(`).

For simulations, I estimate a a Beta distribution for ζ: fζ(ζ) ∝
(
ζ−ζ
ζ−ζ

)g2
(
ζ−ζ
ζ−ζ

)g1

which is equivalent

to a Beta distribution for z. I estimate the Beta distribution by minimizing the mean square error between

the empirical density function (a histogram) and the Beta density.

C.10 Matching function elasticity

Start from θ(`) =
(
fζ(`)|ζ′(`)|
f`(`)U(`)

)
J(`)γ . Note that J(`) = q(`)J̄(`) ∝ θ(`)−αĴ(`), where Ĵ(`) ∝ k̄(u(`))Q ·

`(b + v(`))1−ψP · G(v(`), ζ(`))εψP
(

B
b+v(`)

)ζ(`)
S̄(ζ(`)). Therefore, θ(`)1+αγ ∝

(
fζ(`)|ζ′(`)|
f`(`)U(`)

)
J̄(`)γ , and so

fR(`)
/(

B
b+v(`)

)ζ(`)
∝
(
fζ(`)|ζ′(`)|
f`(`)U(`)

) 1−α
1+αγ

Ĵ(`)
γ(1−α)
1+αγ . Taking logs delivers

log

(
fR(`)

P`[Accept]

)
= cste +

1− α
1 + αγ

log
fz(z(`))z

′(`)

f`(`)U(`)
+

(1− α)γ

1 + αγ
log Ĵ(`, y(`), z(`)) , (52)

where recall that U(`) denotes the number of unemployed workers in location `, and Ĵ(`, y(`), z(`)) is

now known. At this stage, both right-hand-side variables can be calculated. In the model, equation

(52) can be estimated with OLS. It is not hard to add location-specific heterogeneity in the matching

function efficiency or vacancy costs to the model. In that case a structural residual correlated with the

right-hand-side variables arises. In contrast to the previous estimating equations, this structural residual

leads to omitted variable bias in equation (52).

With OLS, α, γ are separately identified only through functional form differences between the right-

hand-side variables because both are functions of the same latent variable `. 2SLS also relies on functional

form identification. Thus, I use the local shift-share shock and a non-linear transformation thereof as

two instruments. Notice also that in the generalized model with omitted variable bias, the latter only

affects the estimation of equation (52), and not the previous estimating equations. Indeed, the previous

estimating equations condition on the observed job losing rate, which is enough to control for the omitted

variables through local job quality z(`).

I first-difference (52) between the two subperiods. I use as the first instruments the same shift-share

shocks ∆Ec. Under the same assumptions as in section C.8, it is a valid instrument. To obtain a second

instrument, I de-mean ∆Ec and use 1∆Ec>0. This is a nonlinear transformation of ∆Ec. Strengthening

the identification assumption to conditional independence makes it a valid instrument.

C.11 Parameter estimates

See Table 9.
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Table 9: Parameter estimates

Parameter Interpretation Target Estimator Estimate

ρ Discount rate Annual interest rate MDE 0.008
∆ Labor force exit rate Aggregate unemployment rate MDE 0.004
ω Housing share (workers) Expenditures on housing MDE 0.23
ψ Housing share (firms) Expenditures on housing MDE 0.11
δ Drift of productivity Job losing rate by tenure NLLS 0.001
σ Volatility of productivity Wage growth by tenure NLLS 0.004
β Bargaining power Labor share MDE 0.08
Y Lower bound of init. prod. Job acceptance probability MDE 0.93
η Housing elasticity Housing prices OLS 3.48
µ Migration rate Migration rate MDE 0.002
1/ε Migration elasticity Migration shares 2SLS 4.72
α Matching function elasticity Local job finding rates 2SLS 0.30
γ Vacancy cost elasticity Local job finding rates 2SLS 1.44
ϕ Learning rate Unemployment scar OLS 0.01

z Lowest job quality Local job losing rates MDE 0.03
z Highest job quality Local job losing rates MDE 0.10
g1 Shape of job quality distrib. Local job losing rates MDE 1.36
g2 Shape of job quality distrib. Local job losing rates MDE 2.19
σ` St.d. of local productivity Local wages MDE 0.14
σa St.d. of local amenities Local population MDE 0.21
c`,a Correlation prod.–amenities Local wages and population MDE 0.38

C.12 Over-identification

See Table 10.

Table 10: Correlation of estimated amenities with observables.

Sun hours 0.119∗ (0.050)

Basic public services 0.072 (0.050)

Education services -0.012 (0.039)

Health services 0.067∗∗ (0.014)

Commercial services 0.046 (0.030)

Obs. 288

R2 0.457

Heteroskedastic-robust standard errors in parenthesis. + p <

0.10, ∗ p < 0.05, ∗∗ p < 0.01. Log amenities on log sun hours

per month and log service establishments.
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C.13 Additional results

See Figures 15 and 16.

Figure 15: Labor market tightness against unemployment-employment
ratios in model and data.

Note: Figure 15 plots the log of labor market tightness in the model at baseline parameters
and when setting γ = 3. It also plots regression lines from regressing labor market tightness
onto the log unemployment-employment rate in the data, consistely with Figure 4(c). Figure
15 reports the regression lines with and without the job-to-job correction in the data.

Figure 16: Optimal policy: exact and approximation from Proposition 5.

Note: Figure 16 plots two computations of the optimal gross profit subsidy across locations.
The solid blue line represents the exact value. The dashed orange line represents the first-order
approximation from Proposition 5.
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The Geography of Unemployment

Adrien Bilal

D Data and descriptive evidence

D.1 Data

DADS panel. The central dataset is the 4% sample of the DADS panel, between 1993 and 2007. Once a
worker enters the dataset in any year after 1976, all her subsequent employment spells are recorded. The dataset
provides start and end days of each employment spell, the job’s wage, the residence and workplace zipcodes of the
individual, four-digit occupation and industry, as well as establishment and firm tax identifiers that can be linked
to administrative balance-sheet data.

In addition to the sample restrictions described in the main text, I exclude from the sample individuals during
the first year that they appear in it. This restriction ensures that aggregate fluctuations in non-employment are
not driven by higher entry in the sample in a particular year, given that individuals are first observed when they
have a job. I also drop individuals from the sample two years after their last job. I keep only the years after 1997
because the entry in the panel is noisier in the initial years 1993-1996. I stop in 2007 to avoid both an important
classification changes in 2008 and the Great Recession in 2009.

DADS cross-section. The DADS Postes, are used by the French statistical institute to construct the DADS
Panel. They cover the universe of French workers, but in the version available to researchers, worker identifiers are
reshuffled every two years. The DADS Postes allow to compute employment, wages, occupational mix as well as
exit rates and job losing rates for the near universe of French establishments, which can be located at the zipcode
level.

LFS. I complement the DADS panel with the LFS. I use the LFS starting in 2003 due to a large survey change
in 2002. The LFS is quarterly and tracks individuals for six consecutive quarters. The LFS reports whether an
individual is working, unemployed or out of the labor force. As in many surveys, the LFS drops individuals if
they move between quarters, which is why the DADS panel is particularly useful. I apply the same demographics
restrictions as in the DADS panel. I use the LFS to discriminate between unemployment and non-employment
in the DADS panel. To that end, I estimate cell-level quarterly transition probabilities between employment,
unemployment and non-participation in the LFS. A cell is an occupation and age group - city group bin. Occupation
and ages are binned into 4 groups based on their average wage. Similarly, cities are binned into 4 groups based on
their unemployment rate. With the estimated transition probabilities at hand, I probalistically impute the non-
participation vs. unemployment status of individuals in the DADS panel. Table 11 shows that the DADS panel
and the LFS have similar aggregate statistics.

Table 11: Summary statistics

DADS LFS

Unemployment rate 0.100 0.071
Implied unemp. rate from losing and finding 0.109 0.055
Participation rate 0.931 0.903
E-to-U probability 0.021 0.015
U-to-E probability 0.173 0.261

Skill definition. Because the DADS panel does not have education data, I construct a measure of skill based on
workers’ occupation and age, I run a Mincer regression of worker wages on basic demographics (age and occupation
fixed effects)and city fixed effects. I retrieve the age and occupation fixed effects, average them over the individual’s
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Figure 17: Persistence of local unemployment, and job-to-job mobility rate. France.
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(b) Job-to-job rate
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Note: Figure 17(a) plots commuting zone unemployment in two subperiods of the sample, after controlling for economy-wide industry
cycles. Blue circles represent a commuting zone. Size is proportional to population. Figure 17(b) plots the job-to-job and job-finding rate
across French commuting zones. Blue circles represent the log of the job finding rate against the log of the unemployment-employment
ratio, across commuting zones in France (DADS panel). Green squares represent the log of the log job-to-job mobility rate across
commuting zones in France (DADS panel). 45 degree line in orange. Estimating a linear regression delivers the following slopes. Job
finding rate: -0.19. Job-to-job mobility rate: 0.46; excluding Paris: 0.26.

work history. Then I rank thoses averages between workers, and define that rank as skill. I check that several
alternative definitions of skill do not alter the results.

More precisely, I run the following Mincer regression:

logwit = αO(i,t)︸ ︷︷ ︸
Occupation

+αY (t)︸ ︷︷ ︸
Year

+αC(i,t)︸ ︷︷ ︸
City

+αA(i,t)︸ ︷︷ ︸
Age bin

+εit

for employed workers i in quarter t. Age is binned into 5-year groups, and occupations are at the 2-digit level.
Then define skill as average occupation and age premium

Ŝi =
1

Ni,O

Ni,O∑
k=1

(α̂O(i,t) + α̂A(i,t))

Firm-level balance sheet data. For several over-identification exercises, I use firm-level balance sheet data.
I use the FICUS data (“Fichier Complet Unifié de Suse”) which covers the near universe of nonfarm French
businesses. The unit of observation is a firm-year. I link the firm identifier to the DADS postes and panel, which
lets me identify all workers in the different establishments of the firm. For some exercises I restrict the analysis to
single-establishment firms to have a well-defined notion of location. In the sample of single-establishment firms, I
use firm age and industry. I can also compute value added per worker (labor productivity), average worker skill at
a firm along with other variables used in the over-identification exercises.

Establishment-level vacancy data. I merge the DADS data with a large-scale quarterly survey that reports
vacancies at the establishment level (“Activité et Conditions d’Emploi de la Main-d’Oeuvre—ACEMO”).

D.2 Persistence and job-to-job rate

Figure 17(a) shows persistence in local unemployment rates after netting out country-wide industry cycles. The
autocorrelation is 1.05. To remove the contribution of industry cycles at the country level, I first compute country-
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wide change in employment at the 3-digit industry level ∆Ej between both subperiods 0 (1997-2001) and 1 (2002-
2007). Then, I construct a predicted employment change at the commuting zone level by projecting the predicted
industry employment changes ∆Ej at the local level using industry employment shares in each location in the
1997-2001 subperiod wc,j,0: ∆Ec =

∑
j wc,j,0 ×∆Ej . Next, I regress changes in local unemployment rates on this

predicted change in employment ∆uc = β0 +β1∆Ec+∆ũc. Finally, I extract the residuals from this regression ∆ũc
and construct a measure of local unemployment net of industry cycles in the second subperiod as ûc,1 = uc,0 + ∆ũc.
Figure 17(a) plots ûc,1 against uc,0.

Figure 17(b) plots the log commuting zone-level job-to-job mobility rate, and the log job finding rate from
unemployment, against the log unemployment-employment rate across French commuting zones.

D.3 Mechanical correlates of job loss

Temporary contracts. If the proportion of workers under temporary contracts varies systematically across
locations, it may mechanically lead to more job loss in locations with a high proportion of temporary contracts. I
use the LFS to assess the role of temporary contracts. I first evaluate the excess probability of job loss for a worker
under a temporary contract. A simple linear regression indicates that a worker under temporary contract has a 1.6
percentage point higher probability of separating into unemployment at the quarterly level—more than twice the
average job losing rate.

I then run a shift-share decomposition of job loss, interacting the excess risk of job loss under temporary
contracts with the share of workers under temporary contracts across locations—which varies from 18 to 23%
across locations. As a result, temporary contracts account for no more than 14% of the overall differences in job
loss.

Seasonality. If there are large seasonal variation in employment across locations, it may mechanically account
for some of the spatial differences in job loss. Figure 18 scatterplots the fraction of job loss by quarter against
the job losing rate, across French commuting zones. Figure 18 reveals that seasonality correlates somewhat with
average job losing rates. Comparing the linear fits at the highest unemployment commuting zone, the fraction of
job loss in the fall quarter is at most 8 percentage point lower than in other quarters. Thus, seasonality can account
for no more than 8% of spatial gaps in job loss.

Figure 18: Fraction of job loss by quarter against commuting zone job losing rate, France.
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Note: Scatterplot of commuting zone-by-quarter fraction annual of job loss, by commuting zone unemploy-
ment rate. Economy-wide means of quarterly fraction of job loss adjusted using the LFS to limit reporting
measurement error in the DADS.

Establishment exit and job reallocation. Figure 19(a) shows that establishment exit accounts for 11% of
spatial gaps in job loss. Job loss at continuing establishments account for the remaining 89%. Thus, establishment
exit is not a sizeable proximate cause for spatial gaps in job loss. Figure 19(b) shows that, even in a purely mechanical
sense, job reallocation accounts for no more than 23% of spatial gaps in job loss. Therefore, job reallocation is not
a sizeable proximate cause for spatial gaps in job loss.
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Figure 19: Correlation between job loss, firm exit and job reallocation.
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Note: Figure 19(a): job loss from exiting establishments and continuing establishments across French commuting zones,
ordered by job losing rate. Figure 19(b): commuting zone job losing rate against commuting zone job reallocation.

E Baseline model

E.1 Proof of Lemma 3

Generalized Nash bargaining. Under Nash bargaining, wages split the Nash product w∗ = argmaxw(W0w−
W1)β(F1 − w)1−β . It is straightforward to show that β(F1 − w∗) = (1− β)

(
w∗ − W1

W0

)
, and thus

W (w∗)

W0
= βS(w∗) ; F (w∗) = (1− β)S(w∗),

where S(w) = F (w) + W (w)
W0

is the adjusted surplus and is independent from w.

Alternating offers. To solve for wages in the alternating offers game, the idea is now to make use Proposition
122.1 p.122, Chapter 7, of Osborne and Rubinstein (1994). The setup of the bargaining game is as follows. There is
a parallel time for bargaining, in which the worker and the firm have linear flow preferences over a wage w given by
W (w), F (w), and discount the future. Denote by δF the discount factor of the worker in the bargaining space-time,
and δF that of the firm.

Disagreement and admissible wages. If bargaining breaks down, each side gets 0. The admissible
bargaining set is all w such that BF ≡ W1

W0
≤ w ≤ F1 ≡ BW , where BW , BF denote the worker’s and firm’s best

agreement, respectively. Finally, define the Pareto frontier as the set of wages w such that there is no other wage
w′ such that both parties prefer w′ to w in the initial round: F (w′) > F (w) and W (w′) > W (w). Because of the
linearity of flow values, the Pareto frontier is exactly equal to the set of admissible wages. I now check Assumptions
(A1-A4) p.122 in Osborne and Rubinstein (1994).

(A1) – For no two distinct wages w 6= w′, it is the case that W (w) = W (w′) and F (w) = F (w′).
Each party’s objective is strictly monotonic in the chosen wage w, so (A1) is satisfied.

(A2) – Getting the other party’s best agreement in the second round is the same as
getting in the first round, i.e. F (BW ) = δFF (BW ) and W (BF ) = δWF (BF ). Since F (BW ) =
W (BF ) = 0, (A2) is satisfied.
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(A3) – The Pareto frontier is strictly monotome: for any efficient/admissible wage w,
there is no other wage w′ 6= w such that each side weakly prefers w′. This again directly follows
from linearity of payoffs.

(A4) – There is a unique pair of wages (wW , wF ) such that δW (wW ) = W (wF ) and δFF (wF ) = F (wW ),
and both (wW , wF ) are efficient. I write down the system of equations δW [W0w

W −W1a] = W0w
F −W1

and δF [F1 − wF ] = F1 − wW . Use the second equation to obtain wF = wW

δF
− 1−δF

δF
F1. Substituting into the first

equation wW = βWF1 + (1 − βW )W1

W0
, where βW = 1−δF

1−δF δW ∈ (0, 1). Hence, wF = βFF1 + (1 − βF )W1

W0
, where

βF = (1−δF )δW

1−δF δW ∈ (0, 1). Finally, wW , wF are automatically on the Pareto frontier because they are admissible and
payoffs are linear, which concludes the proof to the bargaining solution.

Without loss of generality, suppose that the worker moves first. Then the worker’s effective bargaining power

is β = βW . Finally, note that the bargaining solution solves W (w∗)
W0

= β ·
(
F (w∗) + W (w∗)

W0

)
and F (w∗) = (1− β) ·(

F (w∗) + W (w∗)
W0

)
. Therefore, it is enough to define an adjusted surplus F (w) + W (w)

W0
which does not depend on

wages. Rescaled values then split this adjusted surplus.

E.2 Proof of Lemma 1

The structure of the proof follows two steps. The first step uses standard results on HJB-VIs to obtain a Partial
Differential Equation (PDE) formulation with boundary conditions for the adjusted surplus. The second step
explicitly solves this PDE.

Step 1: from the HJB-VI to a PDE. The structure of the HJB-VI (30) has three implications. First,
there exists a continuation region in which the HJB (28) holds. As will become clear, the joint surplus is strictly
increasing in this continuation region. Thus, it takes the form of an interval [y(`),+∞) in each location: there is a
threshold productivity y(`) below which the match breaks up. Then, at that threshold, the surplus must be zero:
S(y(`), `) = 0. This condition is sometimes called the value-matching condition.

Second, because the threshold is chosen optimally, a first-order-condition with respect to the threshold must
hold, implying ∂S

∂y (y(`), `) = 0. This condition is sometimes called the smooth-pasting condition. Pham (2009)

derives the interval property and the smooth-pasting condition.
Third, the joint surplus must be smaller than the surplus of a match without any outside option, which is
y`

ρ+δ−σ2/2 . From the sequential formulation, the joint surplus can be expressed as

S(y, `) = `E0

[∫ τ
0
e−ρt(yt − (b+ v))dt|y0 = y

]
, where τ is the stopping time. Taking an upper bound, the surplus

must be bounded above by the aforementioned expression.
Together, the HJB (28), the value-matching, smooth-pasting conditions and the upper bound determine the

value S(y, `) and the endogenous separation threshold y(`), which I summarize as

ρS(y, `) =
(
y −

(
b+ v(`)

))
`+ (LyS)(y, `) , ∀y ≥ y(`) (53)

s.t. S(y(`), `) = 0 ,
∂S

∂y
(y(`), `) = 0 , S(y, `) ≤ y`

ρ+ δ − σ2/2
.

Step 2: solving the PDE (53). To lighten notation, I drop location indices ` and solve without loss of
generality

ρS(y) = y − c+ LyS , ∀y ≥ y s.t. S(y) = 0 , S′(y) = 0 , S(y) ≤ y

ρ+ δ − σ2/2
.

First re-express the problem in logs x = log y by defining S̃(x) = S(ex). Then

ρS̃(x) = ex − c− δS̃′(x) +
σ2

2
S̃′′(x) , ∀x ≥ x s.t. S̃(x) = 0 , S̃′(x) = 0 , S̃(x) ≤ ex

ρ+ δ − σ2/2
.

This problem is a second-order PDE with two boundary conditions, an unknown threshold x, and a growth condition.
I follow standard methods to solve the PDE given boundary conditions.

Homogeneous equation. Look for a solution S̃(x) = e−τx to ρS̃(x) = −δS̃′(x) + sS̃′′(x) where s = σ2/2.
This delivers a second-order equation ρ = δτ + sτ2. Denote κ = µ/s and η = ρ/s, so that the equation re-writes
τ2 + κτ − 1 = 0. The assumption on parameters implies η > 1 + κ. The discriminant is D = κ2 + 4η > 0. The
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equation hence has two solutions in general τ± =
−κ±
√
κ2+4η

2 . Both roots can be bounded. First, τ− > 0. Second,

−τ+ > 1. Indeed, since η > 1 + κ, −τ+ =

√
κ2+4η−κ

2 >
√
κ2+4κ+4−κ

2 =

√
(κ+2)2−κ

2 = |κ+2|−κ
2 ≥ κ+|+2−κ

2 ≥ 1.
Therefore, the homogeneous solution with τ+ violates the upper bound on the value function. The solution with
τ ≡ τ− is thus the only possible homogeneous solution. Thus, slightly abusing notation, the homogeneous equation

subject to the upper bound has solutions S̃H(x) = Ae−τx, A ∈ R.

Inhomogeneous equation. Now look for solutions S̃(x) = Ae−τx +Bex−C. Substituting into the HJB,
the homogeneous term drops out and we find B = 1

ρ+δ−s and C = c
ρ . Bex is the value if the match continues

forever, −C is the annuitized option value. The term Ae−τx then captures the endogenous separation decision.
Because e−τx solves the homogeneous equation, A is not determined from the HJB. I am left with (A, x) to

determine, with the two boundary conditions S̃(x) = 0, S̃′(x) = 0. These conditions imply Ae−τx +Bex = C and

−Aτe−τx +Bex = 0. Hence ex = τ
τ+1 ·

(
1− 1+κ

η

)
· d and A = B

τ e
(1+τ)x. The solution finally writes

S̃(x) =
ex

ρ+ δ − s
·
{
ex−x + τ−1e−τ(x−x)

}
− c

ρ
.

Going back to y = ex and re-arranging delivers the expression in Lemma 1.

E.3 KFE bound

Derivation of the KFE bound. First consider an intuitive version of the proof. Consider a second-order
time interval (dt)2. The change in log productivity is d2 log zt ≈ σdtN where N is a standard normal variable.
Thus, half of the workers at the threshold y are thrown below the threshold y and into unemployment in an interval

(dt)2. Starting from g(y) workers at the threshold, only a fraction 2−b
1
dt c of those workers remain there after a time

dt. Taking dt→ 0, this fraction must be zero. I now make this intution precise.

Proof. Denote x = log y, and x = log y. Omit ` indices for clarity. Let f be the local invariant density function.
Consider the interval [x, x+ dx). The gross flows in and out of this interval between times t and t+ dt are:

Inflow =

∫ ∞
x+dx

f(z)P[x ≤ z + dWt ≤ x+ dx]dz =

∫ ∞
dx

f(x+ y)P[−y ≤ dWt ≤ −y + dx]dy

Outflow =

∫ x+dx

x

f(z)P[z + dWt > x+ dx or z + dWt < x]dz =

∫ dx

0

f(x+ y)
{
P[y + dWt < 0] + P[y + dWt > dx]]

}
dy.

Then, denoting by Φ the cumulative distirbution function of a standard normal variable,

Net flow(dx, dt) = −
∫ dx

0

f(x+ y)dy +

∫ ∞
0

f(x+ y)

{
Φ

(
−y + dx

σ
√
dt

)
− Φ

(
−y
σ
√
dt

)}
dy.

Then:

∂f

∂t
(x) =

1

dxdt
Net flow(dx, dt) = − 1

dxdt

∫ dx

0

f(x+ y)dy +
1

dxdt

∫ ∞
0

f(x+ y)

{
Φ

(
−y + dx

σ
√
dt

)
− Φ

(
−y
σ
√
dt

)}
dy

= − 1

dt

∫ 1

0

f(x+ zdx)dz +
1

dt

∫ ∞
0

f(x+ zdx) {Φ ((1− z)λ)− Φ (−λz)} dz

where λ = dx
σ
√
dt

. Now,

1

dt

∫ 1

0

f(x+ zdx)dz ≈dx�1
f(x)

dt
+
f ′(x)dx

2dt
+
f ′′(x)dx2

6dt
+O(dx3/dt)

So is left to calculate:
∫∞

0
f(x + zdx) {Φ ((1− z)λ)− Φ (−λz)} dz. In integral form and changing variables:

Φ ((1− z)λ)−Φ (−λz) = Φ(zλ)−Φ(zλ− λ) =
∫ λ

0
ϕ(zλ− y)dy, where ϕ here denotes the standard normal density

function. Then, after some algebra∫ ∞
0

f(x+ zdx) {Φ ((1− z)λ)− Φ (−λz)} dz =
1

dx

∫
R
dzϕ(z)

∫ zσ
√
dt+dx

zσ
√
dt

1[y ≥ 0]f(x+ y)dy.
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Now,
∫ a+ε

a
f(y)dy ≈ f(a)ε + f ′(a) ε

2

2 + 1
2f
′′(a) ε

3

6 + O(ε4), and
∫ δ+ε
δ

f(x + y)dy ≈ f(x)ε + 1
2f
′(x)ε(2δ + ε) +

1
6f
′′(x)ε[3δ2 + 3δε+ ε2] + ... . So

1

dx

∫
R
dzϕ(z)

∫ zσ
√
dt+dx

zσ
√
dt

f(x+ y)dy =
1

dx

∫ ∞
0

dzϕ(z)

∫ zσ
√
dt+dx

zσ
√
dt

f(x+ y)dy (= A)

+
1

dx

∫ 0

−λ
dzϕ(z)

∫ zσ
√
dt+dx

0

f(x+ y)dy (= B)

Then:

A ≈
∫ ∞

0

dzϕ(z)

{
f(x) + f ′(x)dx

(
2
z

λ
+ 1
)

+
1

6
f ′′(x)dx2

[
1 + 3

( z
λ

)2

+ 3
z

λ

]}
.

Similarly, B ≈λ→+∞ A0
−∞ + f(x)

λ

∫ 0

−∞ ϕ(z)z dz + O(λ−2), and so A + B = f(x) + f ′(x)dx + f ′′(x)dx2

6 − f(x)

λ
√

2π
+

O(λ−2 + ...). Thus, ∂f
∂t (x) = − f(x)

dtλ
√

2π
+ o(1). Now, λ → ∞ but dx → 0. So λdt ∼ dxdt1/2 → 0. This implies:

∂f
∂t (x) = −∞, and thus f(x, t) = 0 for all times t > 0.

E.4 Generalization of Lemma 2 and Proposition 1

Instead of Assumption 1, assume that new jobs are created with probability density function g̃0(y). The probability

density function of successful new jobs is g0(y|`) ≡ g̃0(y)

1−G̃0(y(`))
for y ≥ y(`). Define S̄(z, `) =

∫∞
0
S(y/y(`))g̃0(y)dy.

This section proves the following result.

Proposition 8. (Employment distribution)
Denote by g0(y0|`) the density function of successful new jobs. Then the invariant distribution g in location ` is

g(y, `) = B(`)
(
y/y(`)

)−κ
− 1

κ

∫ ∞
y

g0(y′|`)
(
y′/y(`)

)κ dy′
y′
,

where B(`) = 1
κ

∫∞
y(`)

g0(y′|`)
(
y′/y(`)

)κ
dy′

y′ . The job losing and finding rates are

s(`) =
δ∫∞

y(`)

(
log y′

y(`)

)
g0(y′|`)dy′

; fR(`) =
ρ

β

v(`)

b+ v(`)

1− G̃0(y(`))

S̄(z(`), y(`))
.

The proof of Proposition 8 is structured in two main steps. First, I extend Lemma 2. Second, I extend Proposition
1.

Step 1: extending Lemma 2. Apart from the entry distribution, the KFE remains identical. The homo-
geneous solution is the same as in the proof of Lemma 2. Again varying the constant and looking for a solution
g′(x) = A(x)e−κ(x−x), I obtain g′(x) = A0e

−κ(x−x) + e−κ(x−x)
∫∞
x
g0(y)eκ(y−x)dy. Integrating once more:

g(x) = A+Be−κ(x−x) −
∫ ∞
x

dye−κ(y−x)

∫ ∞
y

g0(z)eκ(z−x)dz = A+Be−κ(x−x) − 1

κ

∫ ∞
x

g0(y)[eκ(y−x) − 1]dy.

Integrability imposes A = 0. B is determined by g(x) = 0: B = 1
κ

∫∞
x
g0(y)[eκ(y−x) − 1]dy. As before, the total

measure of new jobs simply scales the invariant mass distribution.

Step 2: extending Proposition 1. The separation flow is σ2

2 g
′(x), where g′(x) = −κB+

∫∞
x
g0(y)eκ(y−x)dy =∫∞

x
g0(y)dy. To get the separation rate, normalize g to 1. Denote by H0 =

∫∞
x
g0(y)dy the measure of newly created

new jobs and h0 = g0/H0 the entry density of new jobs. Using the expression for g above,

κ

H0
=

∫ ∞
x

e−κ(x−x)

∫ x

x

eκ(y−x)h0(y)dy − 1

κ
+

∫ ∞
x

∫ ∞
x

g0(y)dy =

∫ ∞
x

xg0(x)dx.

Therefore the job losing rate is δ
Eg0 [log(y/y)] . Re-arranging the worker’s value of search yields the expression for

fR(`).
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E.5 Sorting generalization: starting productivity distribution

I now state the general set of assumptions required for positive sorting to obtain in equilibrium.

Assumption 2. (Initial productivity distribution)
Let S̄(z, y) be the integral defined in equation (32). Assume that

∂ log yS̄(z, y)

∂y
< 0 ;

∂ log S̄(z, y)

∂z
> 0 ;

∂2 log S̄(z, y)

∂y∂z
> 0.

This assumption lets me generalize the sorting results.

Proposition 9. (Sorting 2)
All the implications of Proposition 2 hold under Assumption 2 instead of Assumption 1.

Proof. The structure of the proof closely follows Appendix B.4.4. Steps 1 and 2 obtain analogously. The main
differences to check are steps 3 and 4. First, the location choice becomes

`∗(z) = argmax
`

log y(`)S̄(z, y(`)) + log(`q(`)). (54)

Steps 3 & 4. Using the expression for the value of search,

q(`)
1−α
α ∝

y(`)S̄(z, y(`))

y(`)− y
1

; y
1
≡ by

0
/ρ.

Hence

`∗(z) = argmax
`

log S̄(z, y(`)) + log `+ log y(`) +
α

1− α
log

y(`)S̄(z∗(`), y(`))

y(`)− y
1

.

As before, it suffices to consider the case α→ 0. In that case,

`∗(z) = argmax
y

log
(
yS̄(z, y)

)
+ log `(y).

Because yS̄(z, y) is log-supermodular in (z, y), PAM between z and y obtains: z′(y) > 0. Under Assumption 2,

log yS̄(z, y) is increasing in z and decreasing in y. Therefore, the “price” that sustains the assignment is increasing
in y. Hence, `(y) is increasing. Thus, y(`) is increasing, and so is z(`).

Mass point case. Suppose that the starting distribution is degenerate at y0 = z > max` y(`). In that case,

(1 + τ)yS̄(z, y) = τz + y1+τz−τ − (1 + τ)y

Then

∂ log yS̄(z, y)

∂z
= τ

1− z−τ−1y1+τ

yS̄(z, y)
> 0 ;

∂ log yS̄(z, y)

∂y
=

1 + τ

y

(y/z)τ − 1

z/y + (y/z)τ − 1− τ
< 0.

When y/z is large enough,
(y/z)τ−1

z/y+(y/z)τ−1−τ ≈
X(z)

X(z)−τ for X(z) = (y/z)τ which is clearly increasing in z. Therefore,

∂2 log yS̄(z,y)

∂y∂z > 0 on some interval [K(y(`)),+∞).

E.6 Sorting generalization: dynamic stability

In this section, I define a notion of dynamic stability of steady-states to rule out steady-states with negative
assortative matching (NAM).

Definition 1. (Dynamically stable assignment)
A dynamically stable assignment is a pair of functions A : ` 7→ (z(`), y(`)) such that (a) A solves the job location
problem (15) and (b) A is the steady-state assignment that arises starting from a uniform assignment, and letting
of jobs choose their location at Poisson rate R, in the limit where R → 0.
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Definition 1 proposes a natural restriction on the set of possible equilibria that may arise. Starting from a
uniform assignment of jobs to locations, the equilibrium must be attainable as jobs are slowly allowed to relocate
over time. This apparently mild restriction suffices to eliminate potential coordination failures, a common source
of mutliplicity in assignment problems with agglomeration economies, whose role is played here by the general
equilibrium feedback of labor market tightness into employers’ payoffs.59

Proposition 10. (Sorting)
Under Assumption 2, conditional on the measure of entrants Me and the value of unemployment U , there exists a
unique globally stable assignment function for job quality z(`) and a unique local thresholdf function y(`). z and y
are strictly increasing functions.

Proof. First, the limit R → 0 ensures that steady-state values are sufficient to characterize employers’ values:
all employers exit with probability one before R changes sufficiently to affect the values. The proof proceeds by
“continuous induction”, i.e. I show that the set of times T such that weak PAM obtains is a non-empty closed and
open subset of R+, which then implies that it can only be R+. Define T to be the set of times in R+ such that
y′, z′ ≥ 0 and such that ∂`(`q(`)) > 0. First, note that T is characterized by a weak inequality y′ ≥ 0. Thus, it is a
closed set.

Initialization. Consider time 0 at which employers are randomly allocated. For the fraction Rdt of em-
ployers who can choose their location, the location choice is given by (54), but where q′/q = 0. Therefore, y′ > 0
and z′ > 0 immediately follows at time 0. Hence 0 ∈ T .

Recursion. Let t be the least upper bound of T . The location choice for employers allowed to relocate at
t is (54), where by definition of T , y′, z′ ≥ 0 and ∂`(`q(`)) ≥ 0 at t. Monotone comparative statics and the SOC
then imply that these inequalities are strict. Since only a small fraction of employers relocate every period, it then
immediately follows that y′, z′ ≥ 0 and and ∂`(`q(`)) ≥ 0 for a small time interval [t, t+ ε). Thus, T is both open
and closed in R+, and is nonempty. Thus, it is R+.

E.7 Job-to-job correction

In both constant returns models with job-to-job search and wage posting (Burdett and Mortensen, 1998, Engbom
and Moser, 2021), wage bargaining (Cahuc et al., 2006), or decreasing returns models with job-to-job search with
wage posting (Bilal and Lhuillier, 2021), wage bargaining (Bilal et al., 2022), the job-to-job transition rate of the
lowest wage workers is equal to the job finding rate of unemployed workers. Thus, in these models, an estimate of
the relative search intensity of employed workers, ξ, is

ξ =
Job-to-job transition rate of workers in first wage centile

Job-finding rate of unemployed workers

Figure 20 displays the job-to-job transition rate of workers by wage centile. Consistent with the aforementioned
models, job-to-job transition rates decline steeply with the worker’s wage rank. In the first percentile, the quarterly
job-to-job transition rate is precisely estimated to be 0.147 or 0.162, depending on whether job-to-job transitions
involving only wage increases are used. Dividing through by the job finding rate of unemployed workers leads to
an estimate of ξ of 0.92. This relatively large number is consistent with recent micro-level evidence from Faberman
et al. (2017) for the U.S. The results in Figure 4(c) are also robust to using a more conventional value of 0.3 for ξ.

59Exogenous differences across locations ` create incentives for jobs to sort, but so do endogenous differences in the
vacancy meeting rate q(`). When exogenous differences in productivity ` are small, starting from an assignment where jobs
are perfectly sorted but in reverse order relative to ` may still generate large enough differences in the vacancy meeting
rate q(`) to sustain that assignment. Jobs’ location choices would thus result in a spatial coordination failure, as aggregate
output would be depressed relative to the best possible self-sustaining assignment. While examining these outcomes may
be interesting per se, they are not the subject of the present paper. An alternative restriction would be to simply pick the
output-maximizing self-sustaining assignment.
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Figure 20: Job-to-job mobility rate by wage centile. France.

0
.0

5
.1

.1
5

Jo
b-

to
-jo

b 
m

ob
ilit

y 
pr

ob
ab

ilit
y

0 20 40 60 80 100

Daily wage percentile

All JtJ transitions Only w/ wage increase

JtJ at first percentile
All:           .162 (.001)
Increase: .147 (.001)

Note: Quarterly job-to-job transition rate of employed workers in
France by wage centile. Blue circles: using all job-to-job transitions.
Orange squares: using only job-to-job transitions that involve a wage
increase.

F Efficiency

F.1 Planning solution

F.1.1 Optimality conditions

The planner chooses the number of unemployed workers U(t, `) to locate in each city ` at time t, the rate at
which to break up existing matches ∆(t, y, `). The planner also chooses the consumption cU (t, `), cE(t, y, `),
hU (t, `), hE(t, y, `) of employed and unemployed workers, as well as the consumption of the owners C(t). For
simplicity, I assume that unemployed workers produce b` at home. I anticipate that the planner chooses PAM, so
that it suffices to let the planner choose the matching function ζ(t, `) together with its slope ξ(t, `).

I denote by λ(`) the planner’s weight on individuals who live in location `. Due to complementaries between
housing and final good consumption in the utility function, the spatial redistribution of the final good is not neutral.
Only one particular set of weights implements an allocation that resembles the decentralized equilibrium, which
will be the focus of this paper.60 The planner’s objective is then

W =

∫ ∞
0

dte−ρt
∫
d`f`(`)λ(`)

{
U(t, `)

(
cU (t, `)

1− ω

)1−ω (
hU (t, `)

ω

)ω
+

∫
E(t, y, `)

(
cE(t, `)

1− ω

)1−ω (
hE(t, `)

ω

)ω
dy

}

+

∫ ∞
0

e−ρtC(t)dt,

where E denotes the mass distribution of employment across productivity y in location ` at time t. The last term

60An alternative assumption to choosing one particular set of weights is that the planner has to provide consumption to
workers with locally produced final goods.
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is the welfare of the owners. The planner is subject to the constraints

∀t, 1 =

∫
d`f`(`)

{
U(t, `) +

∫
E(t, y, `)dy

}
∀t, `, 1 = U(t, `)hU (t, `) +

∫
E(t, y, `)hE(t, y, `)dy

∀t, ` 0 =

∫
f`(`)

{
U(t, `)

(
b`− cU (t, `)

)
+

∫
E(t, y, `)

(
y`− cE(t, y, `)

)
dy
}
− C(t)− ceMe(t)

∀y, `, t, ∂E
∂t

(t, y, `) = L∗yE(t, y, `) + n(Me(t), ξ(t, `),U(t, `))g0(y, ζ(t, `))−∆(t, y, `)E(t, y, `)

∀t, ζ(t, `) = ζ

∀t, ζ(t, `) = ζ

∀t, `,
∫ `

`

ξ(t, x)dx = 1− Fζ(ζ(t, `))

∀t n(M(t), ξ(t, `),U(t, `)) = m
(
M(t)ξ(t, `)

)1−α
U(t, `)α

The first constraint simply states that total population is one in the economy. The second constraint clears the land
market in each location. The third constraints is the planner’s aggregate resource constraint. The fourth constraint
is the time-dependent KFE that encodes how the distribution of employment across productivity evolves over time.
The fifth and sixth constraints are the boundary conditions for the assignment function, i.e. the location choice of
jobs. The seventh constraint is simply the definition of ξ, which is the slope of the assignment function that enters
into labor market tightness. The eighth constraint simply states the matching function.

The structure of the planning problem is standard. The only non-standard element is that the planner controls
a full distribution of workers in each location. This distribution E is an infinite-dimensional object. To use stan-
dard convex optimization methods—e.g. Luenberger (1997)—some regularity conditions must be imposed on the
functional space in which the distribution E is allowed to lie. I build on ideas developed in Moll and Nuño (2018),
who propose functional spaces for such cases. There are several differences between their approach and the one
in this paper. First, their results do not directly apply because of the endogenous separation margin and I must
start from first principles. Second, their method in fact requires further restrictions on the functional spaces that
those they outline. They propose to use square integrable functions of time and other states (section 2.1.2 p. 154).
This restriction is in fact not quite sufficient for their Theorem 2 p. 168 to obtain. The reason is that Luenberger
(1997)’s Theorem 1 p. 243 that they refer to also requires that the transition operator that encodes the evolution
equation of the state, maps into a Banach space. Yet, there is in general no guarantee that a functional operator
like a continuous-time transition operator L∗y maps the space of square-integrable functions into a Banach space.61

For it to map into a Banach space, the functional space in which the distribution lies must be further restricted.
It suffices to impose that the distribution E lies in a Sobolev-Strichartz space, which is a variant of Sobolev

spaces:

H1,2 ≡

{
E : for all g among E , its first t, y, `-weak derivatives,

and second y, `-weak derivatives,∫ ∞
0

e−ρt
(∫∫

|E(t, y, `)|2dyd`
)
dt <∞

}

Sobolev-Strichartz spaces are useful precisely because infinitesimal generators such as L∗y map Sobolev-Strichartz
spaces into Lebesgue spaces (see Tao, 2006), which have a Banach structure.

Finally, the approach I use builds on duality methods similar to Moll and Nuño (2018). These duality methods
apply without loss of generality in my setup because the distribution endogenously satisfies the boundary condition
E = 0 at the lower point of the support.

61I thank Ben Moll and Galo Nuño for related discussions.
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I am now ready to formulate a current-value Hamiltonian (which is equivalent to a Lagrangian):

H =

∫
d`f`(`)λ(`)

{
U(t, `)

(
cU (t, `)

1− ω

)1−ω (
hU (t, `)

ω

)ω
+

∫
E(t, y, `)

(
cE(t, `)

1− ω

)1−ω (
hE(t, `)

ω

)ω
dy

}

− ceMe(t) +

∫
f`(`)

{
U(t, `)

(
b`− cU (t, `)

)
+

∫
E(t, y, `)U(t, `)

(
y`− cE(t, y, `)

)}

+

∫∫
dzd`f`(`)

[
E(t, y, `)LS(t, y, `)

+n(M(t), ξ(t, `),U(t, `))g0(y, ζ(t, `))S(t, y, `)−∆(t, z)E(t, z, `)S(t, y, `)

]

+ ρU(t)

[
1−

∫
d`f`(`)

(
U(t, `) +

∫
E(t, y, `)dy

)]
+

∫ (
∂`π(t, `)

)
Fζ(ζ(t, `))d`−

∫
ξ(t, `)π(t, `)

+ τ(t)

[
1−

∫
ξ(t, `)d`

]
+

∫
d`f`(`)r(t, `)

{
1− U(t, `)hU (t, `)−

∫
E(t, y, `)hE(t, y, `)dy

}
,

where I have substituted out the consumption of owners using the aggregate budget constraint. I have integrated

by parts the ξ constraint with multiplier A, and denoted π(t, `) = −
∫ `
`
A(t, x)dx. I have an adding up constraint

for total employment in each location. S is the multiplier attached to the KFE constraint, which I also integrated
by parts. I have also combined the multipliers on the resource constraints, without loss of generality.

Consumption and housing. Optimality of consumption and housing choices in steady-state delivers

1 =
(1− ω)λ(`)

cU (`)
u(cU (`), hU (`)) =

(1− ω)λ(`)

cE(y, `)
u(cE(y, `), hE(y, `))

r(`) =
ωλ(`)

hU (`)
u(cU (`), hU (`)) =

ωλ(`)

hE(y, `)
u(cE(y, `), hE(y, `)).

Re-arranging,

rhi
ci

=
ω

1− ω
; ui = r−ωci(1− ω)−1,

which then implies rω = λ. Land market clearing in every location re-writes

ω

1− ω
r(`) = U(`)cU (`) +

∫
E(y, `)cE(y, `)dy,

where the second equality follows from the local budget constraint. Vayring the weights λ(`) thus r(`) = λ(`)ω,
and traces out the Pareto frontier of this economy. To keep the focus on the inefficiency in the location choice of
employers, I choose the specific set of weights λ(`) such that the land market clearing coincides with its decentralized
equilibrium counterpart when β = α. Namely, I choose λ(`) such that

λ(`)ω

ω
= U(`)b`+

∫
E(y, `)

[
(1− α)(b+ v(`))`+ αy`

]
dy, (55)

where v(`) is defined below.
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Allocation of workers. I now take FOCs w.r.t. U ,∆ and impose steady-state. Starting with U :

λ(`)u(cU (`), hU (`)) + αn(`)

∫
g0S + (b`− cU (`))− r(`)hU − ρU = 0.

Using the previous FOCs to obtain that λuU = cU + rhU , and denoting v(`)`r(`)−ω = αn(`)
∫
g0S, I obtain

ρU =
(b+ v(`))`

r(`)ω
.

I guess that for now, the definition of v does not depend on r. The co-state equation for E is then

ρS = u(cE(y, `), hE(y, `)) + LS − ρU + (y`− cE(y, `))− r(`)I(`)hE(y, `)−∆S.

Re-arranging similarly to the U FOC,

ρS =

(
y − (b+ v(`))

)
`

r(`)ω
+ LS −∆S.

Finally, the FOC for ∆ yields

∆ =

{
0 if S ≥ 0
+∞ if S < 0.

Therefore, X = r(`)ωS solves ρX = (y − (b + v(`))`)` + LX in the continuation region. Hence, v is defined as
v(`)` = αn(`)

∫
g0X. Together, these define a pair of equations that does not directly depend on r. Thus, the guess

that the definition of v does not depend on r is verified.
These multipliers correspond exactly to the shadow values of unemployed and employed workers when β = α.

The planner breaks up matches when the surplus S is negative, and thus the recursion for S has the same solution
as in the decentralized equilibrium when replacing β with α.

Allocation of jobs. The FOC for Me is

ce = (1− α)
1

M

∫
d`f`(`) n(`)

∫
g0(y, `)S(y, `)dy.

The FOCs for ξ and ζ are then

[π + τ ]ξ = (1− α)nf`

∫
gSdz

0 = f`n ·
(∫

∂ζg0

g0
g0Sdy

)
+

π′(`)

π(`) + τ
· [π(`) + τ ]fζ(ζ).

Denote J(`) ≡ τ + π(`) and so simplifying out f`

n

(∫
∂ζg0

g0
· g0Sdy

)
+
J ′(`)

J(`)
· fζ(ζ)

ξ
· (1− α)n

∫
g0Sdy = 0,

and hence

(1− α)
J ′

Jζ ′
=

∫ ∂ζg0
g0
· g0Sdy∫

g0Sdy
.

Using the known solution to S, one obtains∫ ∂ζg0
g0
· g0Sdy∫

g0Sdy
=
S̄ ′(ζ)

S̄(ζ)
+ log

B0

b+ v(`)
.
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Finally, changing variables to J(`) ≡ J(ζ(`)):

(1− α)
J ′(ζ)

J(ζ)
=
S̄ ′(ζ)

S̄(ζ)
+ log

B0

b+ v(ζ)
.

This equation corresponds to an envelope condition of the decentralized equilibrium which coincides with the FOC
from the competitive equilibrium. Re-write the ξ FOC as

J(`)ξ(`) = (1− α)q(`) ·Mξ(`) ·
∫
g0S,

where I have used that, by definition of q(`), n(`) = q(`) ·Meξ(`). Thus,

J(`)

ρMe(1− α)
= q(`)`

(
B0

b+ v(`)

)ζ(`)
(b+ v(`))S̄(ζ(`)).

Finally, use the definition of v to substitute q out:

J(`)1−α ∝ `1−αv(`)−α ·
(

B0

b+ v(`)

)ζ(`)
(b+ v(`))S̄(ζ(`)).

Then using the envelope condition from above, I obtain the FOC for v:

−v
′(`)

v(`)

[
α+

v(`)

b+ v(`)
(ζ(`)− 1)

]
+

1− α
`

+ 0 = 0. (56)

This FOC resembles the one in the decentralized equilibrium, except that it does not have the last term:(
S̄′(ζ)
S̄(ζ)

+ log B0

b+v(ζ)

)
ζ ′(`). This last term is the labor market pooling externality that the planner internalizes.

Finally, I can go back to the entry FOC, which re-writes:

ce = (1− α)

∫
d` q(`)fζ(ζ(`)|ζ ′(`)|`

(
B0

b+ v(`)

)ζ(`)
(b+ v(`))S̄(ζ(`)),

which correponds to the free-entry condition when β = α.

F.1.2 Proof of Proposition 4

Having laid out the planner’s optimality conditions, I can now turn to the proof of Proposition 4.

Extensions of decentralized equilibrium results. Comparing the v FOC in the decentralized equilib-
rium (39) and in the planning solution (56), the labor market pooling externality immediately arises. Except for
this discrepancy, inspecting the planner’s optimality conditions reveal that they are identical to the decentralized
equilibrium’s when β = α. Therefore, Propositions 2, 1 and 3 extend under the same conditions.

Efficiency. Due to the labor market pooling externality term in the v FOC in the decentralized equilibrium (39)
relative to the planning solution (56), the decentralized equilibrium is inefficient as soon as α > 0.

Comparison of allocations. In the linearized case of small supports for F`, Fz and when β = α, it is possible
to compare the assignment functions. From (45) and (46), v andK are identical in both the decentralized equilibrium

and the planner solution to a first order. But then from the FOC (42), `v
′(`)
v(`) is larger in the decentralized equilibrium

due to the labor market pooling externality term. Given that `w′(`)
w(`) ≈

v
v+v

`v′(`)
v(`) to a first order, the comparison

between reservation wages obtains.
For the comparison between assignmen functions z, it is uesful to start from (41). Re-arranging its first-order

approximation delivers the first-order approximation to v(`) ≈ v
(
`/`)v1 , where v1 is a constant that depends only

on parameters. v1 is higher in the decentralized equilibrium due to the labor market pooling externality.
A common solution method in ODEs is to “bootstrap” successive approximation to derive higher orders. I

follow this method in spirit and substitute back this first-order approximation into (41) and re-arrange to obtain

ζ(`) ≈ 1+
(

1 + b
v (`/`)−v1

)(
1−α+αI0

)
, where I0 > 0 in the decentralized equilibrium and I0 = 0 in the planner’s

solution. Using the boundary conditions, one obtains z(x)−z
z−z = xv1−1

xv1−1 , where x = `
` . This functional form implies
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zDE < zSP except at the boundaries.

Limit of identical locations. Consider the location FOC(47) when there is no dispersion in `. It holds only
if there is dispersion in v. Without the inefficiency, the last term on the left-hand-side is zero. Therefore, it implies
v
b+v (ζ(v) − 1) = −α < 0 which is a contradiction. Therefore, there can be no dispersion in v in the planner’s
solution.

Directed search. I first briefly describe the economy with directed search. Then I show how the values of
workers and employers change. Finally, I show that the location choice of employers coincides with the planner’s
choice.

Setup. Employers can commit to fully state-contingent contracts that promise a stream of wage payments.
For simplicity, I assume without loss of generality that these contracts must be Markovian. Within each location,
there can be a continuum of submarkets indexed by their contract. Workers perfectly observe each contract and
each submarket and direct their search across submarkets. Once they choose a submarket, they queue and wait
until they meet the employers. Meetings in each submarket are created according to the same matching function
as in the random search model.

Values. The value of unemployment satisfies ρU = b`
r(`)ω +maxθ∈Θ` f(θ) s(`,θ)r(`)ω , where without loss of generality

each submarket in location ` is indexed by its labor market tightness θ which lies in the set Θ`. s(`, θ) denotes the
promised value to the worker. The value of employment at wage w is ρV (w, `) = w

r(`)ω +LwV . Then, V −U solves

ρ(V (w, `)−U(`)) = w−b`−V (`)
r(`)ω +Lw(V −U), where I denote V (`) = maxθ∈Θ` f(θ) s(θ,`)r(`)ω the value of search in location

`. Denote also v(`) = r(`)ωV (`)
` the value of search relative to productivity. Finally, define the adjusted surplus,

which satisfies ρJ(`, y) = y`− [V (`)+b`]+LyS with boundary conditions identical to the random search case. Thus,
Lemma 1 applies. The value of employer ζ = 1/z in location ` is then J(ζ, `) = maxθ∈Θ`{q(θ)Eζ,`[S(`, z)−s(θ, `)]}.
Substituting the definition of V to express tightness as a function of the surplus s,

J(ζ, `) = V (`)−
α

1−αm
1

1−α max
ŝ=s

1
1−α

{
Eζ,`[S(`, z)] · ŝα − ŝ

}
.

This maximization results in s(θ(ζ, `), `) = αEζ,`[S(`, z)] and θ(ζ, `)1−α = V (`)
αmEζ,`[S(`,z)] . Therefore,

J(ζ, `) =

{
(1− α)1−α

αα
mEζ,`[S(`, z)]V (`)−α

} 1
1−α

.

Location choice. Using Lemma 1, the value of having entering in location ` for employer ζ is

ρJ(ζ, `) =

{
(1− α)1−α

αα
m

(
B

b+ v(`)

)ζ (
b+ v(`)

)
v(`)−α · `1−α · S̄(ζ)

} 1
1−α

,

which coincides with the planner’s valuation.

F.2 Optimal policy

I consider five possible taxes and subsidies:

• A wage tax paid by the employer τw

• A profit tax τπ

• An unemployment benefits tax τb

• A value added tax τva

• An employment tax τe` paid by the employer, where it is useful to define τn = τe
τbτw

Using Lemma 3, these taxes affect the decentralized equilibrium as follows.

• Effective output is τvay`

• Unemployment benefits are b`τb

• The negotiated wage is w∗ = (1− β)[bτb + v(`) + τe]`+ β τva·z`τw
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• Employer values scale with τπ

These taxes results in flow values for employers

J0(y, `) ≡ (1− β)τπ(τva · y − τe − τwτbb− τwv(`)` = τvaτπ(1− β)

(
z − τe

τva
− τwτb

τva
· b− τw

τva
v(`)

)
`,

and for workers

V0 ≡ β

(
τvaz − τe

τw
· z − bτb − E[V − U ]

)
` =

τva
τw
· β
(
z − τe

τva
− b · τwτb

τva
− τw
τva

E[V − U ])

)
`.

The endogenous separation threshold is then

y ∝ τe
τva

+
τwτb
τva
· b+

τw
τva

v =
τw
τva
·
(
τe
τw

+ τbb+ v

)
=
τwτb
τva
·
(
τn + b+ ṽ

)
,

where ṽ = τbv. Finally, solving the worker’s problem, one obtains

v(`) = βf(`)
τva
τw

(
B0

y(`)

)ζ(`)
y(`)S̄(ζ(`)).

Therefore,

ṽ(`) =
τva
τwτb

β · f(`) ·
(
B0

y(`)

)ζ(`)
y(`)S̄(ζ(`)).

Denoting T = τva
τwτb

one obtains ṽ = c2Ty − b − τn for a constant c2 > 0. One can then use the worker’s value of

search to re-write c2y − b+τn
T = βc1f(`) ·

(
B0

y(`)

)ζ(`)
y(`)S̄(ζ(`)), which implies

q(`) ∝
(
c2y −

b+ τn
T

)− α
1−α

· β
α

1−α ·

[(
B0

y(`)

)ζ(`)
y(`)S̄(ζ(`))

] α
1−α

.

Finally, employers’ expected value is

J(`, ζ)1−α =

(
1− β
1− α

)1−α(
β

α

)α
(τπ(`)τva(`))1−α

 c2y(`)− b
c2y(`)− b+τn(`)

T (`)

·
(
B0

y(`)

)ζ(`)−ζ ·S̄(ζ(`))

S̄(ζ)

α
× JSP(ζ, `, y(`))1−α,

where JSP is the planner’s shadow value of job ζ in location `. To ensure that allocations in the planner’s solution
and the decentralized equilibrium coincide, there are three margins to correct. First, the decision to start produc-
ing together must be efficient, which can be implemented with the employment tax—the standard Hosios (1990)
condition in each location. Second, the overall entry margin must be efficient, which can be implemented with the
overall level of the profit tax. Third, the location choice of jobs must be efficient, which can be implemented with
the spatial progressivity of the profit tax. When those three margins are corrected, it is straightforward to check
that the decentralized equilibrium is efficient from the equilibrium conditions. Any transfers can be funded through
non-distortionay lump-sum taxes on owners. Alternatively, a flat earnings tax (on both wages and unemployment
benefits) leaves the allocation undistorted and concentrates the burden on workers.

Set T = 1. Then there exists a τn that equated the separation threshold for the planner and the decentralized

equilibrium: 1
β ·

c2y−b−τn
y = 1

α ·
c2y−b
y , and so

τn(`) =
α− β
α

vSP (`).

Substituting back into the employer’s problem,

J(`, ζ)1−α =

(
1− β
1− α

)1−α

τ1−α
π (`)

[(
B0

y(`)

)ζ(`)−ζ ·S̄(ζ(`))

S̄(ζ)

]α
× JSP(ζ, `, y(`))1−α.
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The efficient profit tax then satisfies

0 = (1− α)
τ ′π(`)

τπ(`)
+ α

(
S̄ ′(ζ(`))

S̄(ζ(`))
+ log

B

b+ vSP (`)

)
(ζSP )′(`),

and thus τ ′π(`) < 0. Given the convention that τπ is the fraction that the employer keeps after tax, this inequality
implies higher marginal profit tax rate in high ` locations.

Under the assumptions of Proposition 3, I can write:

τ ′π(`)

τπ(`)
≈ − αr

1− α
(sSP )′(`)

sSP (`)
, r ≡ −

(
ζSP0 S̄ ′(ζSP0 )

S̄(ζSP0 )
+ ζSP0 log

B

b+ vSP0

)
. (57)

In addition,
ζSP0 S̄′(ζSP0 )

S̄(ζSP0 )
= − ζSP0

ζSP0 −1
− ζSP0

τ+ζSP0
. When α is small enough, ζSP = ζDE +O(α). To first order, I can thus

use the equilibrium allocation in (57). Then integrating (57) over ` delivers the formula in Proposition 5.

G Quantitative model

G.1 Values

The bargaining solution from Lemma 4 readily extends to the extended model. Denote U(p, a, k) the value of
unemployment in location (p, a) for a worker with human capital k. With Frechet taste shocks and denoting
ν = 1/ε, the continuation value from migration and migration shares are

M(k) =

(∫
U(p, a, k)νFp,a(dp, da)

) 1
ν

; π(`, a, k) =
U(`, a, k)ν

M(k)ν
.

Guess that the value of unemployment scales with k. Then the value of unemployment solves the recursion

(ρ+ ∆ + µ)U(p, a, k) = apr(p, a)−(ω+ψ) · U1(p, a)k + (λ− ϕ)kUk + µM0k

where M0 =
(∫
U1(p, a)νFp,a(dp, da)

) 1
ν . Because there is a continuum of locations, employed workers who receive

the moving opportunity always take it as there is always a location where they taste shock is high enough to make
them move. The adjusted surplus then solves

(ρ+ ∆ + µ)S(y, k, p, a) = pr(p, a)−ψk
[
y − U1(p, a)

]
+ LyS + λkSk

Using Lemma 1, the solution scales with k, and denoting ρ̃ = ρ+ ∆ + µ− λ, satisfies

ρ̃S(y, k, p, a) = k · pr(p, a)−ψU1(p, a) · S
(

y

y(p, a)

)
; ρ̃

y(p, a)

y
0

= U1(p, a),

where y
0

is calculated using ρ̃ as the effective discount rate. Because workers’ outside option scales with k under
the guess, the separation decision is independent from k. Going back to the value of unemployment,

ρ̃U(p, a, k) =
(b+ v(p, a))ap

r(p, a)ω+ψ
k + µM0k − ϕkUk ; ρ̃v(p, a) = βf(p, a)U1(p, a)

(
Y

y(p, a)

)ζ∗(p,a)

S̄(ζ∗(p, a)).

Hence, the guess is verified. I may then define U0 such that U(p, a, k) = U0(p, a)k. Then

(ρ̃+ ϕ)U0(p, a) =
(b+ v(p, a))ap

r(p, a)ω+ψ
+ µM0,

which becomes ρ̃U0(p, a) = ρ̃(b+v(`,a))
ρ̃+ϕ · a`

r(`)ω+ψ +µM0− ϕ
ρ̃+ϕ ·µM0, and therefore U1(p, a) = ρ̃

ρ̃+ϕ (b+v(`, a))− ϕ
ρ̃+ϕµM0.

Under the empirically relevant assumption that µ � 1, the second term is negligible, and so U1(p, a) ≈ ρ̃
ρ̃+ϕ (b +
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v(p, a)). Going back to the joint surplus,

ρ̃S(y, k, p, a) ≈ k · pr(p, a)−ψ
[

ρ̃

ρ̃+ ϕ
(b+ v(p, a))

]
· S
(

y

y(p, a)

)
; ρ̃

y(p, a)

y
0

≈ ρ̃

ρ̃+ ϕ
(b+ v(p, a)).

To a first order approximation in µ, the previous results imply, with ρ̂ = ρ̃+ ϕ,

ρ̂S(y, k, p, a) = k · pr(p, a)−ψ(b+ v(p, a)) · S
(

y

y(p, a)

)
; ρ̂

y(p, a)

y
0

= (b+ v(p, a))

ρ̂U(p, a, k) =
(b+ v(p, a))ap

r(p, a)ω+ψ
k ≡ ρ̂U0(p, a)k ; π(p, a, k) =

(
U0(p, a)

M0

)ν
M0 =

(∫
U0(p, a)νFp,a(dp, da)

) 1
ν

. (58)

G.2 Human capital across locations

I now characterize the human capital distribution in each location. For now, focus on a single location and omit
(p, a) subscripts to facilitate exposition. The probability mass functions of rescaled log human capital h = log k−λt
for employed and unemployed workers in a location solve:

0 = −sgE(h) + fRgU (h)− µgE(h)−∆gE(h)

0 = ϕg′U (h)− fRgU (h) + sgE(h)− µgU (h) +K(h)−∆gU (h),

where K(h) is the overall entry distribution inclusive of in-migration and newborns. This simple combination of
ODEs obtains because there is no relative human capital growth while employed. This feature delivers the crucial
simplification that separations are independent from the human capital level. Re-arranging the first equation,
gE(h) = fR

µ+∆+sgU (h), and so, substituting back into the second equation

0 = ϕg′U (h)− (µ+ ∆)
µ+ ∆ + s+ fR
µ+ ∆ + s︸ ︷︷ ︸
≡C0

gU (h) +K(h).

While this ODE can be solved explicitly, computing the mean human capital is sufficient to characterize equilibrium.
Multiply the KFE by eh, integrate over h in R and integrate the first term by parts to obtain

0 = [ehgU (h)]∞−∞ − ϕ
∫
R
ehgU − C0

∫
R
ehgU +

∫
R
ehK.

The first term is 0 at both extremes. Denote k0 =
∫
R e

hK. To get average human capital in the location one

needs to solve for total population masses in each location: U , E . They solve similar KFEs, so that E = fR
µ+∆+sU

and (µ + ∆)µ+∆+s+fR
µ+∆+s U = K, where K is the total measure of entrants. Hence, the unemployment rate is u =

U
U+E = µ+∆+s

µ+∆+s+fR
= µ+∆

C . The measure of unemployed is U = u · Kµ+∆ . Population is E + U = K
µ+∆ . By definition,∫

R gU = U .
Average human capital in a location is

k̄(`, a) = E[eh|p, a] =
k0

U · (ϕ+ C)
= (µ+ ∆)

EK [eh]

u · (ϕ+ C)
=

µ+ ∆

µ+ ∆ + u(p, a)ϕ
· EK [eh],

where EK [eh] is the expected human capital of new entrants. By definition, the measure of entrants at rescaled
human capital h is K(h) = µπ(p, a)I(h)+∆L(p, a)E(h), where I is the economy-wide invariant distribution, and E
is the entry distribution, and π are migration shares. Hence EK [eh] = µπ

µπ+∆LE
I [eh]+ ∆L

µπ+∆LE
E [eh]. In steady-state,

population density is equal to migration shares: L(p, a) = π(p, a) Therefore,

EK [eh] =
µ

µ+ ∆
EI [eh] +

∆

µ+ ∆
EE [eh] ≡ x0EI + (1− x0)EE

with x0 = µ
µ+∆ . Now, EI [eh] =

∫
L(p, a)Fp,a(dp, da) · k̄(p, a), so that one obtains a linear system in k̄(p, a) across
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locations:

k̄(p, a) =
z0

z0 + ϕu(p, a)

[
x0

∫
L(p′, a′)k̄(p′, a′)Fp,a(dp′, da′) + (1− x0)EE

]
,

where z0 = µ+ ∆. Denote X(p, a) = (1 + ϕ0u(p, a))k̄(p, a), where ϕ0 = ϕ/z0. Re-write the linear system as

X(p, a) = (1− x0)EE + x0

∫
L(p′, a′)

1 + ϕ0u(p′, a′)
k̄(p′, a′)Fp,a(dp′, da′).

This system can be explicitly solved. Multiply by Z(p, a) ≡ x0
L(p,a)

1+ϕ0u(p,a)Fp,a(dp′, da′) and integrate to obtain∫
Z(p, a)Fp,a(dp, da) =

∫
Z(p, a)Fp,a(dp, da)

1−
∫
Z(p, a)Fp,a(dp, da)

· (1− x0)EE =⇒ Z(p, a) =
(1− x0)EE

1−
∫
Z(p′, a′)Fp,a(dp′, da′)

,

which finally implies

k̄(p, a) =
1

1 + ϕ0u(p, a)
· (1− x0)EE

1− x0

∫ L(p′,a′)
1+ϕ0u(p′,a′) · Fp,a(dp′, da′)

.

G.3 Labor market flows

Given (58), the expression for labor market flows immediately extends given an assignment z(p, a) and a value of

search v(p, a). The only change follows from the KFE, in logs: 0 = δg′(x) + σ2

2 g
′′(x)− (∆ +µ)g(x). The associated

characteristic equation has only one negative (stable) root, κ = − 1
2

[
2δ
σ2 + 2

√
2µ+∆

σ2 + δ2

σ4

]
, which coincides with

the simple solution κ0 = 2δ
σ2 when µ+ ∆ = 0. Thus, the previous expression for the invariant distribution extends

with κ instead of κ0. In addition, the expression for the average productivity also extends. The exit rate from
employment is then δ/z(p, a) + µ + ∆. Using the flow equation for unemployment together with the steady-state

migration shares, one obtains u(p, a) = δ/z(p,a)+µ+∆
δ/z(p,a)+µ+∆+fR(p,a) .

G.4 Migration shares with a continuum of locations

This section briefly outlines how to extend standard discrete choice results with continuum of locations. For
simplicity, I simply describe the case of a static discrete choice problem. Start from a discrete number of locations
i ∈ {1, ..., N}. Suppose an agent solves

max
i=1...N

uiεi, (59)

where εi follows a Frechet distirbution with shifter Ti(N) and shape parameter ν. The shifter Ti(N) may depend
on N . Standard results then imply that the probability that the agent chooses i is

πi(N) =
Ti(N)uνi∑
j Tj(N)uνj

, (60)

and indirect utility is

V (N) = Γ(1− 1/ν)

[
N∑
i=1

Ti(N)uνi

] 1
ν

. (61)

Now suppose that locations i ∈ {1, ..., N} lie within an interval. Without loss of generality, assume that this
interval is [0, 1]. Consider the limit in which N → +∞. For exposition, suppose that all locations i ∈ {1, ..., N} are
equally spaced and remain in [0, 1] as N → +∞. Suppose also that ui ≡ u(i) and Ti(N) ≡ T (i,N), where u, T are

continuous functions. Postulate T (i,N) ≡ 1
N T (i). Then (60) becomes πi(N) = T (i)u(i)ν/N

1
N

∑N
j=1 T (j)u(j)ν

. The denominator

is a standard Riemann integral approximation, and so 1
N

∑N
j=1 T (j)u(j)ν →N+∞

∫ 1

0
T (j)u(j)νdj. Hence, to first
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order

πi(N) ∼ T (i)u(i)ν∫ 1

0
T (j)u(j)νdj︸ ︷︷ ︸
≡π(i)

× 1

N
. (62)

π(i) defines a probability density function. Just as with any continuous random variable, in the limit N →∞, the
probability that any location i is chosen πi(N) converges to 0. However, choices admit a smooth probability density
function π(i). Similarly, indirect utility (61) becomes

V (N) = Γ(1− 1/ν)

[
1

N

N∑
i=1

T (i)u(i)ν

] 1
ν

→N→∞ Γ(1− 1/ν)

[∫ 1

0

T (i)u(i)νdi

] 1
ν

≡ V.

The limit of the maximization problem (59) thus always delivers a finite indirect utility V . Agents choose among an
infinite number of options. Even though the shocks ε have unbounded the support, the rescaling Ti(N) = T (i)/N
ensures that any individual shock has a vanishing mean, keeping the maximization problem well-behaved in the
limit. An alternative interpretation is that agents choose an interval [i, i + 1/N) that shrinks as N → +∞, and
their utility function scales with the width of the interval.

G.5 Population, housing prices and composite index

Having solved for average human capital k̄(p, a) in each location, it is possible to characterize housing prices and
thus the value of employers. From Supplemental Material G.4, total population in a location is given by migration
shares:

L(p, a) =

(
U0(p, a)

M0

)ν
(63)

where ν = 1/ε. Housing rents follow from equating total housing demand to local supply. From the Cobb-Douglas
structure of the production function, employers spend a fraction ψ of output on housing. Hence, total housing
demand in location (p, a) is now

H0r(p, a)η = pk̄(p, a)r(p, a)−ψ−1L(p, a)G(ζ(p, a), v(p, a)),

where η is the housing supply elasticity, and

G(ζ, v) = ωu(v, ζ)b+ ω(1− u(v, ζ))(b+ v)(1− β + βEp,a[y|y > y(v)])

+ ψ(1− u(v, ζ))(b+ v)Ep,a[y|y > y(v)]) (64)

For the last equality, I anticipate that local unemployment will still be a function of v, ζ alone, and that there
is PAM in equilibrium. In what follows, normalize H0,EE to one without loss of generality. After substituting
equation (64) into the migration share equation (58), obtain

L(p, a) = M
− 1

ε+
ω+ψ

1+η+ψ

0 ·

[
a · (pE(p, a))

1+η−ω
1+η+ψ · (b+ v(p, a))

G(v(p, a), ζ(p, a))
ω+ψ

1+η+ψ

] 1

ε+
ω+ψ

1+η+ψ

. (65)

After substituting equation (65) back into (64), obtain

r(p, a) = M
− 1
ω+ψ+ε(1+η+ψ)

0 ·
{
a · (pk̄(p, a))1+ε · (b+ v(p, a)) ·G(v(p, a), ζ(p, a))ε

} 1
(1+η+ψ)ε+ω+ψ .

Therefore the adjustment factor for the expected adjusted surplus in (58) is

pk̄(p, a)r(p, a)−ψ = M
ψ

ω+ψ+ε(1+η+ψ)

0 ·

(
(pk̄(p, a))ω+ε(1+η)a−ψ

) 1
(1+η+ψ)ε+ω+ψ

[
(b+ v(p, a))G(v(p, a), ζ(p, a))ε

] ψ
(1+η+ψ)ε+ω+ψ

. (66)
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This equation motivates the definition of the composite index

`(p, a) =
(
pω+ε(1+η)a−ψ

) 1
(1+η+ψ)ε+ω+ψ

. (67)

G.6 Location choice of employers

Using the adjusted surplus and (66), the value of opening a job in location (p, a) for employer ζ = 1/z is

J(ζ, p, a)
1

1+γ ∝ k̄(p, a)Q · `(p, a)(b+ v(p, a))1−ψP ·G(v(p, a), ζ∗(p, a))εψPq(p, a)

(
B

b+ v(p, a)

)ζ
S̄(ζ), (68)

where the optimal vacancy posting decision has been maximized out, and G is defined in equation (64). Re-arranging

equation (68) delivers equation (19), with P = 1
ω+ψ+ε(1+η+ψ) , Q = ω+ε(1+η)

ω+ψ+ε(1+η+ψ) , and

C(w, z) = (b+ v(w))−1G(v(w), 1/z)ε (69)

Using the worker’s value of search to substitute out q(p, a) delivers the employer’s location problem

max
p,a

k̄(u(v(p, a), ζ∗(p, a))(1−α)Q · `(p, a)1−α(b+ v(p, a))1−(1−α)ψPv(p, a)−α ·G(v(p, a), ζ∗(p, a))(1−α)εψP

·
(

B

b+ v(p, a)

)(1−α)ζ+aζ∗(p,a)

S̄(ζ)1−αS̄(ζ∗(p, a))α, (70)

where k̄(u(v(p, a), ζ(p, a)) ≡ k̄(p, a) but where the dependence on the local unemployment rate has been made
explicit.

G.7 Single index property

In principle, employers must take two first-order conditions for their optimal location choice: with respect to each
dimension i ∈ {p, a}. After taking these first-order conditions and re-arranging, one obtains: ∂iv = A(v, ζ, `)∂i` +
B(v, ζ, `)∂iζ

∗ for some functions A,B. Now guess that ζ∗ is a function of `(p, a) only. Then one obtains for i ∈ {p, a}
∂iv = C̄(v, ζ, `)∂i` for some function C̄. Combining equations, standard partial differential equation results imply
that v is a function of ` alone. Thus, employers need only choose the unidimensional combined index `(p, a).

Why is the combined index `(p, a) is a local sufficient statistic in equilibrium? Given that the direct contributions
of local productivity p and amenities a are combined into the single index `(p, a) in the location choice of jobs (19),
it is natural to conjecture that this single index will be a sufficient statistic for the model’s outcomes. However,
one potential complication arises. Labor market clearing in each location relates the number of vacancies to the
number of unemployed workers. While the volume of local vacancies is a function of `(p, a) only as per equation
(19), the number of locally unemployed workers is not. Because workers also directly care about amenities a, their
location choices reflect p and a in a combination that does not align with employers’. Thus, the number of locally
unemployed workers varies with `(p, a) and with amenities a conditional on `(p, a).

The key insight is that employers only value locations through the combined index `(p, a) as long as labor
market tightness θ(`) also only depends on the combined index. As illustrated by Figure 21, employers are then
indifferent between all locations that have the same index `(p, a) even if these locations have different amenities a.
Jobs with the same quality z thus allocate along one-dimensional indifference curves—`(p, a) isoquants—to ensure
that labor market tightness θ(`) remains constant along the indifference curve. Locations with higher amenities a
conditional on the local advantage index `(p, a) have both more unemployed workers and more open jobs, but in
similar proportions.62

G.8 First-order condition for employers

With this observation at hand, the structure of equation (70) then closely mirrors its baseline model equivalent.
Therefore, the assignment resuts extend under either Assumption 1 or Assumption 2 – the latter would only the
expression for S̄. The FOC for the optimal location choice is then

62D(p, a) in Figure 21 encodes how small changes dp, da translate into small changes d`. Formally, is the determinant of
the Jacobian matrix of the mapping `(p, a).
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Figure 21: The location choice of employers and workers in two-dimensional space.
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and where

Gv = ωbuv + ω(1− u)(1− β + βE)− ω(b+ v)uv(1− β + βE) + ψ(1− u)E − ψuv(b+ v)E
Gζ = ωbuζ + ω(1− u)(b+ v)βEζ − ωuζ(b+ v)(1− β + βE) + ψ(1− u)(b+ v)Eζ − ψuζ(b+ v)E ,

where here E(ζ) = Eζ [y/y|y ≥ y]. It is then possible to express labor market tightness in a location `:

θ(`) = −Mefζ(ζ(`)V(`, ζ(`))ζ ′(`)

u(`)L(`)f`(`)
; V(`, ζ(`)) ∝ J(ζ∗(`), `)γ . (71)
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The maximized value of employers is
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1
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1
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G.9 Labor market clearing and population determination

After substituting equation (67) back into (65),

L(p, a) ∝ `(p, a)
1+η−ω
ω+ε(1+η) · (b+ v(p, a))

1+η+ψ
ω+ψ+ε(1+η+ψ)

G(v(p, a), ζ(p, a))
ω+ψ

ω+ψ+ε(1+η+ψ)

· a
1

ω+ε(1+η) .

Then average population density in locations with index `, L(`), is given by

L(`) ∝ `
1+η−ω
ω+ε(1+η) · (b+ v(`))

1+ψ
ω+ψ+ε(1+η+ψ)

G(v(`), ζ(`))
ω+ψ
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· C(`) ; C(`) = E
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1
ω+ε(1+η)

∣∣∣`(p, a) = `
]
.

By construction, (ω + ψ + ε(1 + η + ψ)) log ` = (ω + ε(1 + η)) log p− ψ log a. As an example for C(`), consider the
lognormal case of the estimation. Then (log a, log `) is jointly lognormal, with variance matrix

σ2
a ∗

σa
ω+ψ+ε(1+η+ψ) ((ω + ε(1 + η + η))ρapσp − ψσa)
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Using the conditional normal distributions, log a | log ` = 1
σ2
`
· (ω+ε(1+η))ρapσpσa−ψσ2

a

ω+ψ+ε(1+η+ψ) log `+N , where N ∼ N (0, σ2
a(1−

ρ2
a,`) is independent from log `.63 Therefore, the correction factor is

C(`) = C0 exp

(
σ2
a

σ2
`

·
ρap

σp
σa
− ψ

ω+ε(1+η)

ω + ψ + ε(1 + η + ψ)
· log `

)
.

G.10 Efficiency

All but one of the additional choices in the extended model are efficient. Thus, the normative results extend,
with one caveat. Workers have heterogeneous human capital within a location but search in the same labor market.
Therefore, low human capital workers who separate into unemployment create a negative externality on high human
capital workers who are searching for a job. In general, this provides a motive for the planner to retain workers
with low human capital longer on the job.

This source of inefficiency is not the focus of the paper, and thus I do not attempt to derive an optimal policy
that would correct it. Rather, note that when ϕ and the support of Fk are small enough, there is little dispersion
between human capital levels within a location. In that case, it is possible to show that, the inefficiency is small in
the sense that it is quadratic in ϕ,Vark. Finally, it is possible to extend the directed search environment to the richer
framework. Because human capital is not observed by employer prior to matching, the optimal contract may in
principle depend nonlinearly on human capital if employers try to screen different workers. It is nonetheless possible
to show that the optimal contract is still a local wage rate per unit of human capital, which makes comparisons
with the random search model straightforward. Making those arguments precise requires a substantial amount of
new notation and lengthy derivations. Thus, they are omitted in the present paper, but are available upon request.

63Note that the correlation is ρa` =
(ω+ε)ρapσp−ψσa
ω+ψ+ε(1+ψ)

/
σ`
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G.11 Welfare

Local welfare gains. To a first order approximation in µ, workers who never receive the moving opportunity
face indirect utility in location ` equal to

Wu(`) ≡ E
[∫

U(p, a, k)
L(p, a)

L(`)
Fp,a(dp, da)

∣∣∣`] = A0N0U2(`)D0(`)k̄(`),

where A0 is a transformation of parameters, R ≡ 1
ω+ε(1+η) , N0 = M

(ω+ψ)P
0 , and

U2(`) = `ε(1+η−ω)R(b+ v(`))ε(1+η+ψ)PG(v(`), ζ(`))−ε(ω+ψ)P ; D0(`) = E[aεR(1+ηψP)|`].

For the average worker starting in location ` who never receives the moving opportunity, indirect utility is then

Ww(`) ≡Wu
0 (`)

(
1 + βS̄(ζ(`))(1− u(`))

)
.

The following decomposition of welfare for workers who never receive the moving opportunity follows:

W (`) = Ww(`)× k̄(`). (73)

Aggregate gains. The indirect utility of unemployed workers is equalized across locations due to preference
shocks. It is equal to M0, which is given by

M0 =

{∫
U2(`)ν`

1+η−ω
ω+ε(1+η)D1(`)F`(d`)

} 1
(1+η+ψ)P

.

where D1(`) = E[aR(1+ηψP)|`]. The indirect utility W of the average worker is

W =

∫ {
u(`)E[U(p, a, y)|`] + (1− u(`))E[V (p, a, y)|`]

}
k̄(`)L(`)F`(d`)

= A1M0

∫ (
1 + βS̄(ζ(`))

)
k̄(`)L(`)F`(d`) (74)

where A1 > 0 is a transformation of parameters. (74) suggests the decomposition W = W
u ×W e ×W k

, where

W
u

= AM0 ; W
e

=

∫ (
1 + βS̄(ζ(`))

)
L(`)F`(d`) ; W

k
=

∫ (
1 + βS̄(ζ(`))

)
k̄(`)L(`)F`(d`)∫ (

1 + βS̄(ζ(`))
)
L(`)F`(d`)

. (75)

H Estimation: Acceptance probability

I propose a microfoundation of job search that lets me use data on duration since last job offer to inform Y . In
the LFS, there is data on duration since last meeting with the national unemployment agency (at the time called
ANPE, “Agence Nationale Pour l’Emploi”, now called “Pôle Emploi”) and duration since last job offer. The latter
is not necessarily an offer that came from the ANPE.

To leverage this data, I assume that individuals meet with either the national unemployment agency, or the
private sector with intensity S. Conditional on a meeting, it is a meeting with the ANPE with probability s, and
a meeting with the private sector with probability 1− s. Conditional on meeting the ANPE, workers they receive
an offer with probability ω. Conditional on receiving an offer, they accept it with probability a. Conditional on
a private sector meeting, they receive offers with conditional probability τ . They accept them with conditional
probability a. The key is that the conditional acceptance probability a is the same. Allowing for private sector
meetings is also important because only 6.58% of jobs are found through the ANPE.

Unemployment duration in sample of unemployed individuals. The rate at which an individual
leaves unemployment in dt is S(sω + (1 − s)τ)a · dt. Therefore, the probability that a currently unemployed
individual has been unemployed for exactly n small dt periods is pun ∝ [1−S(sω+ (1− s)τ)adt]n. Note that a given
amount of time is T = n · dt. The expected unemployment duration in a sample of unemployed individuals is thus

DU =
{

1
S(sω+(1−s)τ)a ·

1
dt − 1

}
· dt→dt→0

1
S(sω+(1−s)τ)a . So DU = eS(sω+(1−s)τ)a.
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Composition of job findings. The probability that an individual finds a job in a quarter through the ANPE
is sωa, and through other channels (1 − s)τa. Thefore, the probability that an employed individuals has found a
job through ANPE is PANPE = sωa

sωa+(1−s)τa . At this point, one can thus identify x ≡ Ssωa and y ≡ S(1 − s)τa:

x+ y = 1
DU

and x = PANPE × (x+ y).

ANPE meetings. The probability that a currenly unemployed individual has last met with the ANPE n

periods ago and did not find a job is thus pn ∝
[
1 − Sdt + S(1 − s)(1 − τa)dt

]n
. So the expected duration since

the last ANPE meeting is, similarly to before, DC = 1

S
(

1−(1−s)(1−τa)
) = 1

Ss+y , which identifies Ss given x and y:

Ss = 1
DC
− y. Hence, X = ωa = x

Ss is known and z = x
y = ω

τ
s

1−s , and so ω/τ .

ANPE offers. Similarly, the probability that a current unemployed worker has last received an offer from ANPE

n periods ago is qn ∝
[
1−Sdt+S

(
(1− s)(1− τa) + s(1−ω)

)
dt
]n

=
[
1−S

(
1− (1− s)(1− τa)− s(1−ω)

)
dt
]n

. So

the expected duration since the last ANPE offer is DO = 1

S
(

1−(1−s)(1−τa)−s(1−ω)
) . Re-write this as 1

DO
= Ssω+ y,

which identifies Ssω = 1
DO
− y, and therefore a = x

Ssω .
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